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Why study ultrasound? 

AG = Ghot - Gcold 

AG is the Gibbs free energy 

change across a phase boundary 

cP 
A\/is the volume change across 

the boundary, and is zero for second 

order phase transitions 

1 1 1 dAV       1 tfAG 
2 

Khot      Kcold V   & V   a* 

AATJS the discontinuity in bulk modulus 

across the boundary, which ties directly 

to the speed of sound, and which is not 

zero for a second order transition 
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Signai/üüisft£Qm.paciSüaof pulsed and resonant measurements 

parameter Impulse Swept Sine 

drive power per unit 
bandwidth 

peak power/full 
bandwidth 
106/109=001 

peak power/sweep 
rate 
1/100=0.01 

noise bandwidth for 
complete 
measurement using 
optimum receiver 

109 number of modes x . 
width of each mode x 
10=104Hz 

drive duty cycle 
(typical) 

10-3 1 

detect duty cycle 1 1 

square root of all 
factors, which is a 
measure of S/N 

3x10-7 10-3 

Table I. Signal-to-noise comparison between impulse (pulse-echo) and 
swept-sine (RUS) resonance measurement methods for a measurement of 
a 1 cm sample with resonances having a Q=104, using 10 modes over 0.5 
MHz-1.5MHz=106 Hz bandwidth to obtain an elastic modulus. Note that the 
pulse-echo measurement provides about 0.1% absolute accuracy at best, 
compared with about 0.01% for the best RUS measurements. 
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John William Strutt, the Baron Rayleigh tried to do this 
computation. Without a 90MHz Pentium, he found that 

In the 
case of * short rod and of A particle dtuated near the cylindrical 
boundary, this lateral motion would be comparable in magnitude 
with the longitudinal motion, and could not be overlooked without 
risk of considerable error. 

226. The problem of a rectangular plate, whose edges are 
free, is one of great difficulty, and has for the most part resisted 
attack1. 

Even with a Pentium, if you try this using finite element methods, 
the computation time goes like the cube of the numerical accuracy 
and you can't compute as well as you can measure in a 
reasonable time on a reasonable computer. However, if you are 
careful, and smart, as were Orson Anderson and his postdoc 
Harold Demarest at Bell labs 30 years ago, then  
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12 ELASTIC MODULI AND SOLID-BODY RESONANCES 

3.3 The problem with 3-D resonances in solids 

As suggested above, the resonances of 3-dimensional solids with small aspect 
ratios (all the dimensions are comparable) are very difficult to compute. To see 
why, let's set up a problem that John William Strutt, Baron Rayleigh4, worked 
on his honeymoon. We will not solve the problem here, nore we will follow 
through with Rayleigh's approximate solution because, as Rayleigh notes"A 
more complete solution...has been given by Pochhammer..."5. Furthermore, in 
Chapter 4, we will set up all the machinery to solve this and other nasty 
problems to as high an accuracy as anyone might care about (6 digits is easy 
on a PC). 

The problem here is to redo the computation that resulted in 2.2.7 but 
now with a short fat rod. When such a rod resonates, it alternately bulges and 
constricts at some places along its length but not at others. 

i \ \ i : 

Fig. 3.3 A short fat bar undergoing a longitudinal oscillation. As the bar 
oscillates between being longer and shorter, it also alternately bulges and 
constricts near its middle. 

Stresses along the bar associated with longitudinal oscillations, combined with 
the effect of the Lame coefficient A, cause lateral strains as depicted in Fig. 
3.3. The problem is to understand completely all the strains and velocities of 
all the material in the bar. This is very difficult to do simply. What we can do 
is use o to estimate the lateral motion of the bar, include this in the total kinetic 
energy, and then estimate the frequency shift. This approach relies on an 
oscillator alternating between brief moments when everything is stopped (think 
of the top of a pendulum's swing) to brief moments when all that moves is 
moving at its peak speed and no strians are present. Because we are not 
considering any dissipation to be present, the total kinetic energy at peak 
speeds equals the total potential energy when things stop briefly. If in the case 
of a short fat bar, more mass moves than in a long thin bar of eqaul mass, then 
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Reprinted fro« 
26 June 1970. volume IM. pit»« 1579-15»« 

Properties and Composition of Lunar Materials: Earth Analogies 

Abstract The sound velocity data for the lunar rocks wert compared to numer- 
ous terrestrial rock types and were found to deviate widely from them, A group of 
terrestrial materials were found which have velocities comparable to those of the 
lunar rocks, but they do obey velocity-density relations proposed for earth rocks. 

Certain data from Apollo 11 and 
Apollo 12 missions present some diffi- 
rulties in that they require explanations 
for the signals received by the lunar 
seismograph as a result of the impact 
of the lunar module (LEM) on the lunar 
surface (7). In particular, the observed 
signal does not resemble one due to an 
impulsive source, but exhibits a gener- 
ally slow build-up of energy with time. 
In spite of the appearance of the re- 
turned lunar samples, the lunar seismic 
signal continued to ring for a remark« 
ably long time—a characteristic of very 
high Q material. The lunar rocks, when 
studied in the laboratory, exhibited a 
low Q (2). Perhaps most startling of all. 

however, was th« very tow sound veloc- 
ity indicated for the outer lunar layer 
deduced from the LEM impact sifnal. 
The data obtained on the lunar rocks 
and fines agree well with the results of 
the Apollo 12 seismic experiment (2, 
3). These rock velocities are surtlingly 
low. The measured velocities on a vesic- 
ular medium grained, igneous rock 
(10017) having a bulk density of 3.2 
g/cm* were v, = 1.S4, and v, s 1.05 
km/sec. The results for a microbreceia 
(10046) with a bulk density of 2.2 g/ 
cm» were v, = 1.25 and v. = 0.74 km/ 
sec for the compressional (v,) and 
shear (v.) velocities. 

It was of some interest to consider 

the behavior of these lunar rocks in 
terms of the expected behavior based 
on  measurements  of earth  materials. 
Birch (4) first proposed a simple linear 
relation between compressional velocity 
and density for rocks. This relation was 
examined further by Anderson (5) who 
showed that this was a first approxima- 
tion to a more general relation, deriva- 
ble from a dependence of the elastic 
moduli  with  the  density  through  a 
power function. Comparison of the re- 
sult! obtained from the returned lunar 
rocks  with  the predictions  of these 
relationships expresses graphically the 
manner  they  deviate   from  the   be- 
havior of rocks found on earth. The 
velocities are remarkably lower than 
what would be predicted from either 
the Birch or Anderson relationships. 

To account for this very low velocity, 
we decided to consider materials other 
than those listed initially by Birch (4) 
or more detailed compilation of Ander- 
son and Liebermann (6). The search 
was aided by considerations of much 
earlier speculations concerning the na- 

Table 1. Comparison of compressional velocities of lunar rocks and various earth materials. 
Lunar rocks »• Sedimentary r* Metasaorphk »» Igneous H Minerals »» 
and cneesei (km/see) rocks (km/see) rocks (km/sec) rocks (km/sec) (km/sec) 

Sapless (Swiss» 2.12 Dolomite 5.6 SchaU 5.1 Grans» 5.9 Corundum 10.1 
lunar Rock 10017 I.S4 Dolomit* 4.69 Slate 5.39 Svenha 5.7 Periclaea 9.69 
Cietost (Norway) 1.83 Limestone 5.06 Charnockit* 6.15 Dtofita 5.71 Spinel 9.91 
Provulone duly) 1.73 Limn to IM 5.97 Gneiss 4.9 Otiaocian 6.40 Garnet I.S3 
Romano (Italy) 1.75 Greywacke 5.4 Marble 6.02 Andeaiw 5.23 Quartz 6.05 
Cheddar (Vermont) 1.72 Greywacka 6.06 Quartxite 5.6 Gebet« SJ Hematite 7.90 
Enuncnthal  (Swiu) 1.65 Sandstone 4.90 AmphiboJitf 6.70 Gabore 6J Otivine 1.42 
Mocnster (Wiscorain) 1.57 Edosjtt 6.19 Korite 6.50 Trevorita 7.23 
Lunar Rock 1004« 1.25 Diabase 6.33 Urne 7.95 
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Computation of resonances 

from Migliori et.al. Physica B 183,1,1993 

The procedure for solving the direct problem 
for an arbitrarily shaped elastic solid with vol- 
ume V, elastic tensor cijkl, density p, and with a 
free surface S begins with the Lagrangian 

L = J (KE - PE) dV (4) 
V 

where the kinetic energy, KE, is given by 

KE= \po>2\i), (5) 

and the potential energy, PE, by 

PE = l2CijkluLjukJ . (6) 
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Following Hamilton, we allow u( to vary arbit- 
rarily in the volume V and on the surface 5 
(w,-> u, + 8w,) and calculate the variation hL in 
L. The result is 

5L = J (left side of eq. (S))fiutdV 
v 

+1 (left side of eq. (9))^ dS (7) 
s 

The immediate results are two equations, the 
elastic wave equation and the vanishing of 

surface traction 

2 p<o ut + cIJkluk„ = 0 , (8) 

njcijk^kj = 0 (9) 

where {«J is the unit outer normal to S. 
Because of the arbitrariness of 8w, in V and on 

S, the w/s which correspond to stationary points 
of L (i.e. 8L =0) must satisfy eq. (8) in V and 
eq. (9) on S. There are no such M/S, of course, 
unless a)2 is one of a discrete set of eigenvalues, 
the normal mode frequencies of free vibration of 
the system. 

10 
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Following the Rayleigh-Ritz prescription, we 
expand the displacement vector in a complete set 
of functions {<£A}, 

"i = axi*A9 (10) 

and choose as our basis functions powers of 
cartesian coordinates: 

*A=x'yv, (ii) 

where A = (/, m, n) is the function label, a set of 
three nonnegative integers. After substituting 
eq. (10) into eq. (4), we obtain (a becomes a 
column vector) 

L= \a)2aTEa- {aTra (12) 

ii 
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Vibrations of a Rectangular Paraflelipiped 

*Not a plane wave among them 

•Sufficiently complex to provide ail the elastic moduli 

•Completely understood mechanics problem 

12 
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The "Calvin and Hobbes" mode! of the vibrations of a rectangular 
parallelepiped 

13 
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1 2 3 4 5 

Potato     Sphere      Ellipsoid    Spheroid    Sphere 
6 

Egg 

7 

Hemi 

FIG. 8. Frequency spectra of a number of objects in the potato family. The 
seven stations correspond to shapes as labeled, with semiaxes as given in 
Table II. The sphere frequencies agree well with those in the literature for 
these material parameters (Poisson's ratio = 1/4).20 The dimensional pa- 
rameters </,+,</, _,...,</3_ are interpolated linearly between the seven sta- 
tions here. Several interesting features invite comment. First, the potato has 
no degenerate lines, because of its low symmetry, and the sphere, converse- 
ly, has few lines that are nondegenerate. The ellipsoid has no degeneracies, 
and the spheroid, the egg, and the hemisphere (all being rotationally sym- 
metric) do, but never more than doubly degenerate lines. Small deviations 
from the sphere in the egg direction do not change any of the frequencies to 
first order, because d3 + increases as much as dy _ decreases, compensating 
one another as far as affecting resonant frequencies is concerned. As in sev- 
eral other figures, apparent avoided crossings on this plot should be viewed 
with suspicion because the plotting program does not interchange line iden- 
tities when physically the modes do, in fact, cross. Spectra are computed for 
241 abscissa values here and elsewhere, which sets the scale on which avoid- 
ed crossings may be spurious. 

14 
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C:\data\0629.009 

T«263.7K   PEAK AT   .806150MHz   F« .89615311 Iz   FWH11« .000030MHz 
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Frequency(MHz) 

IT 898 
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Instrumentation Block Diagram 
Transducers 

Transmitting            Receiving 

Synthesizer O Amplifier 

Sample 

Filter Mixer 

Computer A/D 
Converter 

Local 
Oscillator 

Low temperature RUS cell 
with a 2mm rectangular 
paralleiipiped sample set 
between 2 diamond/LiNb03 

transducers using no 
coupling fluids. The force on 
the sample is equivalent to 1 
gm weight. This cell 
operates between 1K and 
400K. 

16 
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Transducer construction 

Lithium Niobate Disc 

i 
Diamond 
Cylinder 

1.5 mm 

Silvered Kapton Film 

/ 

Silvered 
Kapton 

Electrical 
Lead 

Fig.  3. Shown is a schematic of the diamond/polyimide/ 
LiNbO, composite transducer used for all the measurements. 

17 
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Resonances of a 5120 steel RPR at 38C and 378C 
measure using metal diffusion bonded LiNb03/Alumina 
transducers 

5120Sted38C 

38C 

745000 

Frequency (Hz) 

755000 766000 

25 r 

20 

I   15 

I 
"§   1.0 

0.5 

0.0 

:Af^ 
A 

51203ed378C 

I ̂

V^jv*^W. 

730000 740000 750000 

Frequency (Hz) 

-L 
760000 

378C 
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Ultimate accuracy determined by geometry-for a Si3N4 bail 
bearing, geometry errors are less that 1 part in 105. So are the 
modulus errors! 

Table 1 
Resonant ultrasound measurement of a 0.63500 cm diameter Si,N4 ceramic sphere with a density of 3.2325 g/cm'. /„ are measured 
frequencies, f, are fitted, n is the mode number, k is our designator (to be discussed below) for the symmetry of the mode and i is 
in essence the harmonic number of each symmetry type. Multiple entries indicate the mode degeneracy. The fit for 
IL = 1.2374 x l()'; dyne/cm: and a = 0.2703 has a xz (%) = 0.0124. This is sufficient to determine M to about 0.01% and o- to 
about 0.05%. There are no corrections so these values are absolute. 

n /, (MHz) /„ (MHz) % error (^/)  

(6,1). (I.D. (4. 1).(4.2), (7,1) 
(5.1). (3. 1). (5. 2). (8.1). (2.1) 
(1,2). (7.2). (6. 2) 
(5,3). (2.2). (3. 2). (8.2). (3.3). (8.3). (2.3) 
(1.3).(6,3).(7.3).(1.4).(6.4).(7,4).(4,3) 
(5.4) 
(5.5). (8.4). (3. 4). (5.6). (2.4) 
(5.7). (5.8). (5. 9). (3.5). (8.5), (2.5). (3,6). (8.6). (2.6) 
(6.5). (7. 5). (7. 6), (1.5). (4.4). (1.6). (6.6). (4.5). (4,6) 

1 0.775706 0.775707 -0.000138 
6 0.819567 0.819983 -0.050778 

11 1.075664 1.075399 0.024614 
14 1.198616 1.198505 0.009239 
21 1.217375 1.217850 -0.039042 
28 1.440760 1.440750 0.000712 
29 1.527080 1.526474 0.039695 
34 1.558358 1.558848 -0.031448 
43 1.580067 1.579871 0.012426 

23 
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Determination of high temperature moduli to support the 
broad DOE initiative in heat treatment distortion 

5120 steel -ground parallelepiped 
free dimensions are   d1, d2, d3     (initial= 0.41205, 0.33973, 0.26380) cm 
using 10 order polynomials   mass=   .2875 gm; density^ 7.785 gm/cc 

C11 C44 
n f-expt f-calc %err df/d(moduli) 
1 .340010 .339607 -.12 .00 1.00 
2 .447200 .447109 -.02 .13 .87 
3 .490240 .490366 .03 .16 .84 
4 .541860 .541482 -.07 .02 .98 
5 .557460 .556663 -.14 .00 1.00 
6 .591740 .592306 .10 .05 .95 
7 .608670 .608417 -.04 .31 .69 
8 .615590 .615290 -.05 .02 .98 
9 .623100 .622662 -.07 .07 .93 
10 .642700 .642897 .03 .12 .88 
11 .675510 .676384 .13 .10 .90 
12 .683560 .683316 -.04 .05 .95 
13 .690650 .690436 -.03 .16 .84 
14 .746720 .747335 .08 .10 .90 
15 .753860 .754125 .04 .05 .95 
16 .827430 .827569 .02 .06 .94 
17 .848300 .849153 .10 .03 .97 
18 .855320 .854953 -.04 .08 .92 
19 .870540 .870865 .04 .12 .88 
20 .878390 .878891 .06 .11 .89 
21 .882080 .881734 -.04 .33 .67 
22 .884870 .884342 -.06 .21 .79 
23 .887380 .887639 .03 .20 .80 
24 .891190 .891892 .08 .04 .96 
25 .916680 .916689 .00 .31 .69 
rms errors .0680 %, 

Fitted values for elastic constants and dimensions: 
Young's Modulus ■ 30.39x106 psi (209.55 GPa) 
Shear Modulus = 11.82x10* psi (81 50 GPa)    Poisson's ratio- 0.285 
d1 = 0.4121 cm      d2 ■ 0.3395 cm       d3 = 0.2639 cm 

Perturbation analysis of error sensitivity : (goodness of fit) 
X2 increased 2% by the following % changes in independent parameters 

=> errors on fitted values - 0.5% 
C11 C44 d1 d2 d3 
.48 .41 -.42 -.42 -.4 
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Elastic constants of copper. B represents bulk modulus. 

Single crystal Polycrystal (wire-drawn) 

C{j (GPa)   Literature 
average 

Measured0      RP Cylinder 

en 

C33 

C12 

Cl3 

C44 

C66 

168.75 

122.14 

170.88 

124.63 

75.48 

137.68 

74.01 

140.05 

193.61 

205.88 

105.65 

95.00 

39.35 

43.98 

131.65 

194.25 

203.98 

106.84 

95.93 

39.46 

43.71 

132.84 

•Crystal rotated 45.4° about [100]. 
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Elastic constants of tantalum at room temperature. 

T(K) P (g/cm3) en (GPa) ci2 (GPa) C44 (GPa) 

3001 16.678 266.7 160.8 82.5 

3001 16.678 266.8 161.4 82.5 

3002 16.633 260.9 157.4 81.8 

2983 16.626 260.2 154.5 82.6 

2954 16.641 266.3 160.5 82.8 

^.I. Bolef, J. Appl. Phys. 33, 2311 (1962). 

2F.H. Featherstone and J.R. Neighbours, Phys. Rev. 130, 1324 (1963). 

3N. Soga, J. Appl. Phys. 37, 3416 (1966). 

4Euler angles (defined in Roe's convention) were determined to be a = 138.3°, 

ß - 29.7°, and j = 155.1° by RUS and a = 135°, ß = 33°, and 7 = 158° by 

X-ray. 
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Structural phase transition in La2.xSrxCu04 

RUS simultaneously sees collapse of c66 

and no effect on c44 in a 2mm single crystal 

0. 6 

N   0. 5 
£ 
ü 
>0. 4 C 

c?0. 3 

o 
CO. 2 

CD 
CD 
0 0. 1 

0.0 
220 

•    • 

0. 7^ 

cTO. 6 
S 
<J 0. 5 

C 
>>0. 4 

-o0.3 

Ü 

0. 2 

0. 1 

0.0 
220 

^y 

240 260 280 
Temperature(K) 

»•••       •      •       • 

300 

La2Cu 04 

240 260 280 
Temperature (K) 

300 

27 



TRANSPARENCY  27 

J 
Usrrl. P L ̂ l.-A CoA 

nn,  np,   it ,  rho» 6, 
V 

10,     1 ,    6.946 
i         fön fr %urr wt k i 11 33        23 12 44 66 

1 0.550101 0.548752 -0.25 0.0 4 1 0.01 0.01     0.00 0.00 0.17 0.33 
2 0.655544 0.653127 r0.37 0.0 4 2 0.01 0.00    0.00 0.00 0.47 0.02 
3 0.767276 0.767542 0.03 1.0 3 1 0.02 0.01  -0.01 0.00 0.00 0.48 
4 0.840904 0.840137 -0.09 1.0 1 1 0.35 0.17 -0.18 0.01 0.01 0.15 
5 0.842859 0.840724 -0.25 1.0 8 1 0.02 0.01    0.00 0.00 0.48 0.00 
6 0.870588 0.872288 .   0.20 1.0 2 1 0.02 0.01   -0.01 0.00 0.48 0.00 
7 0.882324 0.882338 0.00 1.0 6 1 0.41 0.03 -0.05 •0.06 0.17 0.00 
8 0.914348 0.916268 0.21 1.0 7 1 0.31 0.27 -0.24 0.02 0.04 0.10 
9 0.982734 0.985844 0.32 1.0 6 2 0.35 0.06 -0.11 0.01 0.19 0.00 

10 1.017951 1.018350 0.04 1.0 5 1 0.40 0.45 -0.41 0.06 0.00 0.00 
11 1-.031479 1.028883 -0.25 1.0 1 2 0.07 0.30 -0.09 0.00 0.14 0.09 
12 1.064057 1.062296 -0.17 1.0 2 2 0.36 0.04 -0.09 -0.01 0.19 0.01 
13 1.070964 1.071351 0.04 1.0 7 2 0.10 0.19 -0.04 -0.01 0.12 0.14 
14 1.071533 1.072243 0.07 1.0 5 2 0.47 0.31  -0.27 -0.01 0.00 0.00 
IE 1.091915 1.091434 •0.04 1.0 3 2 0.09 0.45 -0.21 0.02 0.04 0.12 
16 1.101242 1.101298 0.01 1.0 2 3 0.05 0.02 -0.02 0.00 0.21 0.24 
17 1.119834 1.116659 -0.28 1.0 e 2 0.37 0.05 -0.08 -0.02 0.18 0.01 
18 0.000000 1.135942 0.00 0.0 5 3 0.63 0.04 -0.02 -0.14 0.00 0.00 

19 1.163975 1.164571 0.05 1.0 4 3 0.02 0.01    0.00 0.00 0.34 0.13 
20 1.186826 1.188038 0.10 1.0 8 3 0.08 0.03 -0.04 0.00 0.19 0.23 
21 1.237561 1.235048 -0.20 1.0 5 4 0.32 0.38 -0.26 0.05 0.00 0.01 
22 1.264551 1.261810 -0.22 1.0 3 3 0.07 0.06 -0.04 -0.01 0.40 0.01 
23 1.296307 1.294200 -0.16 1.0 I 3 0.26 0.33 -0.20 0.01 0.03 0.06 
24 1.317507 1.316531 -0.07 1.0 7 3 0.30 0.31  -0.20 0.00 0.03 0.06 
25 1.321605 1.320288 -0.10 1.0 5 5 0.46 0.11 -0.02 -0.07 0.02 0.00 
26 1.329940 1.326090 -0.29 1.0 6 3 0.45 0.11  -0.15 -0.02 0.11 0.00 
27 1.354530 1.354440 •0.01 1.0 1 4 0.26 0.07 -0.08 -0.02 0.11 0.16 
28 1.357242 1.358113 0.06 1.0 7 4 0.24 0.16 -0.15 0.01 0.15 0.09 
29 1.410719 1.410488 -0.02 1.0 6 4 0.27 0.09 -0.09 -0.02 0.24 0.00 
30 1.471757 1.474156 0.16 1.0 6 5 0.27 0.15 -0.15 0.01 0.21 0.01 
31 1.510419 1.508057 -0.16 1.0 3 4 0.16 0.02 -0.03 -0.01 0.03 0.34 

32 1.511018 1.515919 0.32 1.0 .7 5 • 0.35 0.14 -0.04 -0.06 0.04 0.07 
33 1.512835 1.516014 0.21 1.0 6 6 0.13 0.04 -0.03 -0.01 0.27 0.11 
34 1.516509 1.518927 0.16 1.0 1 S 0.23 0.20 -0.09 -0.02 0.14 0.05 
35 1.564802 1.560320 -0.29 1.0 1 6 0.11 0.06 -0.03 -0.01 0.27 0.10 
36 1.566096 1.567781 0.11 1.0 5 6 0.23 0.21    0.01 0.02 0.03 0.00 
37 1.586001 1.585657 -0.02 1.0 8 4 0.15 0.09 -0.06 -0.01 0.31 0.01 
38 1.592957 1.590255 -0.17 1.0 4 4 0.14 0.06  -0.06 0.00 0.15 0.22 
39 1.599764 1.600863 0.07 1.0 2 4 0.16 0.10 -0.07 -0.01 0.19 0.13 
40 1.607484 1.610029 0.16 1.0 3 5 0.17 0.19 -0.16 0.03 0.22 0.06 
41 1.608641 1.611600 0.18 .1.0 5 7 0.17 0.24 -0.14 0.01 0.07 0.16 
42 1.628330 1.628521 0.01 1.0 7 6 0.09 0.05 -0.03 0.00 0.27 0.12 
43 1.635094 1.639071 0.24 1.0 8 5 0.20 0.11   -0.08 -0.01 0.18 0.11 
44 1.672216 1.674642 0.15 1.0 2 5 0.15 0.11  -0.06 -0.01 0.30 0.01 
45 1.738091 1.735809 -0.13 1.0 4 5 0.13 0.08 -0.06 0.00 0.26 0.07 
46 1.740325 1.743251 0.17 1.0 5 8 0.28 0.04 -0.05 -0.02 0.25 0.01 
47 1.775364 1.775280 0.00 1.0 4 6 0.12 0.07 -0.03 -0.01 0.27 0.06 
48 1.782064 K779391 -0.15 1.0 7 7 0.26 0.10 -0.10 -0.01 0.12 0.13 
49 0.000000 1.818747 0.00 o.o 3 6 0.07 0.02 -0.02 0.00 0.02 0.41 
50 0.000000 1.822177 0.00 0.0 5 9 0.28 0.06  -0.07 -0.01 0.07 0.17 
51 0.000000 1.826381 0.00 0.0 1 7 0.28 0.07 -0.08 -0.02 0.07 0.16 

or thorhombic elastic constants  (cl I,c22,c33.c23, Cl3,el2,c44 c55.c66): 
2.65932 2.65932 2. 58209 0.99080 0.99080 0.63820 
0.67740 0.67740 .   0. 58697 

dimensions 
0.11436 0.12371 0. 10992 

mats error  • 0.00000e+0 0 % 
rmsr.  0.16522 oereent 

chisquare  increased 2% by % change 
►  -0.25  -0.14 -0.66  -1.70    0.01   -0.01 

chisquare increased 2* by * change 
0.06 -0.31 -0.28 0.53 0.00 0.02 
chisquare increased 2%  by % change 

-0.12  0.03 -0.13 0.39 0.05 0.00 
xohmrq61   ctss  time 82.350      seconds 
epu- 66.355   i/o- 7.158 mem« 8.837 

in  x's of 
0.00 0.00 0.00 

in  x's of 
0.00 0.00 0.00 

in  x's of 
0.00 0.00 0.00 

all  done 
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Detection of mi croc racking in a 
single crystal sample of EuB6 

\) Resonances of the pristine sample 
3) Resonances after a small Stress has induced 

microcracking 

I) 

•4.M 
lasa 

* 
i 

') 

A- u is. 

L Jwv 
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We have not succeeded in answering all of our questions. 
Indeed, we sometimes feel that we have not completely 
answered any of them. The answers we have found only 
served to raise a whole new set of questions. In some 
ways we feel that we are as confused as ever, but we think 
we are now confused on a higher level, and about more 
important things. 

■Author unknown 
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The vibrational part of the free energy of an ensemble of inde- 
pendent insulator oscillators obeying Bose-Einstein statistics 
is [Landau and Lifshitz, 1958] 

where there are 3pN modal energies given by u\, U2, U3 ... SpN] 
N is Avogadro's number; p is the number of atoms in the for- 
mula unit; h is Planck's constant; and k is the Boltzmann 
constant. 

An important approximation to the above equation is pro- 
vided by the assumption that all frequencies depend on V, 
but not explicitly on T. This is called the quasiharmonic 
approximation, defined by 

and 

where 2 = 1,2,3...3pN. 
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Assume that the acoustic normal modes, /j, measured in 
RUS, follow the quasiharmonic approximation; that is 

Wr°- (4) 

Expressing U as fi(P,T), we have from calculus 

^X=(iOp+(^)v(^)r' (5) 

By means of a calculus equation involving P, V, and T, we 
have 

§)v = aKT> (6) 

where a, the volume coefficient of thermal expansivity, is 
(l/V)(dV/dT)pi and KT, the isothermal bulk modulus, is 
-V {dP/dV)T. 

Therefore, within the quasiharmonic approximation, the pres- 
sure derivatives of frequencies are easily approximated from 
the temperature derivatives, being 

'?£)    =-J^(°*)    . (7) 
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Then, assuming each fc is linear in P, we can find 

fi(P)T = fi(P = 0, T) + (J|)   P. (8) 

The linear pressure dependencies of optic phonon frequency, 
including Raman and infrared vibration, are found in a- and 
ß-olivine up to at least 14 GPa [Chopelas, 1990,1991; Hofmeis- 
ter et a/., 1989; Cynn and Hofmeister, 1994]. 

Before we can confidently use the above equations to find 
elastic constants versus P, we must be sure of 3 conditions: 
(1) the thermal pressure (or aKx) must be independent of 
V; (2) (dfi/dT)v = 0 must be fulfilled; and (3) the mode 
frequencies must be linear in P. In principle, CXKT could vary 
with T and P (or V), implying that the (dfi/dP)T obtained 
from — (1/aKr) (dfi/dT)v is appropriate for only one co- 
ordinate of P, T space. Thus, the assumption that aKr is 
independent of volume is necessary for condition 3 as well. 
We shall examine solids for which conditions 1 and 2 are ful- 
filled, or one or the other condition is fulfilled. The test of 
the first condition is whether CXKT is independent of V. 
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Is CXKT Independent of V? 

When PTH is independent of V, OLKT is independent of V, as 
is now shown. The general form of the equation of state is 

P(V,T) = P1(V) + PTH(V,n (9) 

where the first term on the right, P1, refers to the isothermal 
equation of state (EoS), and the second term on the right, 
PTH , refers to the thermal pressure. Since Pi is independent 
of T, {dP/dT)v = {dPTH/dT)v, and therefore 

PTH = I aKT dT at constant V. (10) 

Therefore, aKr must vary with V in the same way PTH varies 
with V. The thermodynamic identity relating aKr and V is 
given by Anderson [1995] 

f öCXKT\    _ IOLKT (&r - K'), (11) 

where ST is the Anderson-Grüneisen parameter, a dimension- 
less thermoelastic parameter defined as—(L/aÜTr) (9KT/dT)p. 

Is There Anharmonicity in Cy at High T? 

The literature has several examples, e.g., for NaCl and MgO, 
(dCv/dT)p = 0 at high T. 
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Table 1. MgO: Physical Properties at High Temperature 

T P a Ks G CP 7 Cv KT 

100 3.602 0.63 165.7 132.0 0.194 1.59 0.194 165.6 

200 3.597 2.24 164.6 130.3 0.662 1.55 0.658 163.5 

300 3.585 3.12 163.9 131.8 0.928 1.54 0.915 161.6 

400 3.573 3.57 162.3 129.4 1.061 1.53 1.048 158.9 

500 3.559 3.84 160.7 126.9 1.130 1.53 1.098 156.1 

600 3.545 4.02 158.9 124.4 1.173 1.54 1.131 153.2 

700 3.531 4.14 157.1 121.8 1.204 1.53 1.153 150.4 

800 3.516 4.26 155.1 119.2 1.227 1.53 1.166 147.4 

900 3.501 4.38 153.1 116.7 1.246 1.54 1.175 144.3 

1000 3.486 4.47 151.1 114.1 1.262 1.54 1.181 141.4 

1100 3.470 4.56 148.9 111.5 1.276 1.53 1.185 138.3 

1200 3.454 4.65 146.7 109.0 1.289 1.53 1.188 135.1 

1300 3.438 4.71 144.4 106.4 1.301 1.52 1.190 132.1 

1400 3.422 4.80 142.0 103.8 1.312 1.52 1.191 128.1 

1500 3.405 4.89 139.7 101.3 1.323 1.52 1.191 125.7 

1600 3.388 4.98 137.3 99.0 1.334 1.51 1.191 122.5 

1700 3.371 5.04 134.9 96.7 1.346 1.50 1.193 119.6 

1800 3.354 5.13 132.7 94.5 1.358 1.50 1.193 116.6 
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To successfully predict Cij(P) from measured (dCij/dT)p, 
we need three conditions satisfied: 

1. 

2. 

d(aKT) 
dV 

= 0 

dT 
= 0 

v 

3.    Cij(P) = Cij(P = 0) + 
aa *3 

OP 

(12) 

(13) 

(14) 

To test these three conditions: 

1.    Is PTH independent of V or is ST = Kf, (15) 

where ST =       *     Ä)    and JT = (fg)   ? 

atfr \ dT ) p \dPJ 

2.    Is 

3.    Is 

dC v 
<9T 

02C *j- 

dP2 

P \WM   / T 

= 0    (Dulong and Petit limit)?    (16) 

= 0    (beyond our resolution)?      (17) 
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Quasiharmonic theory is based on the assumptions, 

where i = l,2t3...3piV 

Therefore, we assume that for the normal modes, f, 

measured in RUS, 

I), = 0- (18) 
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Sodium chloride (NaCl), 
at ambient conditions. 

dimension : 5.947x4.529x3.463 mm3 
density : 2.160 g/cm3 
Cn : 496.7 (3.7) kbar 
Cl2 : 131.8 (4.4) kbar 
C44 : 127.8 (0.2) kbar 

ctKT = (! 17x10-6 /K)*(242 kbar) = 0.028557 kbar/K 

mode 294 K 571 K (dUdT) {dl'/dP) 
(Hz) (Hz) (Hz/K) (Hz/kbar) 

Au-1 (torsion): 180600 176300 -15.5 543.6 
Blu-I (llexture): 255100 229100 -93.9 3286.9 
B1 g-1 (shear): 297300 286900 -37.5 1314.7 
Ag-! (dilation): 370600 320200 -181.9 6371.4 
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Pra(T) - P™(298K),   (GPa) THV   7     *fH 
1.6 '       I [ ' ' ' i ■ ■ ' i | i i i i 

NäCl 
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d £R aKr 
dinV = 6T-K' 

f~ *T0 . Kb 

200 400 600 

Temperature (K) 

800 
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d in aKT , 
dinV    =6T

~
K 

I ÖTQ.KQ 
r 

5.5 
5.0 

4.5 
4.0 

3.5J-        d ' OKV 

♦ 5T 

Nad 

•»* 

3.0?- 
2.5^- 

°-~ 0.8 0.9 i.o 
n = v/v0 

42 



TRANSPARENCY 12 
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d In aKT 

d£nV = 8T-K' 

500 1000 1500 2000 

Temperature (K) 
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f 
PTH - P„„(300K),   (GPa) 
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yi.4 
Cp and Cv ,   (J/g/K) 

1 i * i i i i i i i i i i i i i i 
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Elastic Moduli, (GPa) 
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i U 
CpandCv,   (J/g/K) 
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16.1 
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i 
Elastic Moduli, (GPa) 
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Table 5. Calculated RPR Frequencies for Foreterite at 
High Pressure 

Mode 300 K (df,/dT) 
Hz/kbar 

(dfi/3P) 
Hz/kbar 

lOkbax 
Hz Hz 

Au-1 647430 -55.3 1598.3 663412 
An-2 771500 -76.2 2202.3 793523 
B2g-1 959190 -78.7 2274.6 981936 
B3g-1 965260 -93.9 2713.9 992399 
B2u-1 973720 -63.9 1845.4 992174 
Blg-1 1001740 -95.2 2750.0 1029240 
Blu-1 1004250 -61.7 1783.2 1022082 
B3u-1 1018320 -80.8 2335.3 1041672 
B2u-2 1061100 -78.3 2261.6 1083715 
Blu-2 1120120 -88.4 2554.9 1145669 
Blg-2 1194370 -91.2 2634.4 1220713 
B2g-2 1211820 -93.0 2686.4 1238684 
B3g-2 1219490 -86.0 2485.6 1244345 
B3u-2 1225260 -85.9 2842.7 1250086 
B3g-3 1302690 -105.9 3060.7 1333296 
Ag-t 1331730 -96.2 2780.3 1359533 
Au-3 1368250 -123.1 3557.8 1403828 
Blg-3 1398060 -121.8 3520.2 1433262 
B3u-3 1418260 -104.7 3024.6 1448505 
Ag-5 1432110 -77.0 2225.4 1454364 
Blu-3 1459700 -104.7 3026.0 1489960 
B2g-3 1468400 -131.5 3799.1 1506391 
B2u-3 1494980 -102.1 2949.4 1524474 
Blu-4 1564840 -130.0 3757.2 1602412 
B2u-4 1575170 -135.0 3900.3 1614172 
Ag-43 1636520 -98.2 2836.7 1664887 
Blu-5 1668710 -110.1 3180.6 1700516 
B2u-5 1688220 -118.4 3422.0 1722439 
B3u-5 1701340 -108.4 3132.9 1732669 
B2u-6 1707460 -147.7 4267.3 1750133 
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Table 6. Pressure Dependence of the Elastic Constant! of Forsterite 

(dc.,\ 
\ap )r Pulse1 Pulse2 Brillouin3 Pulse-Echo1 Brillouin9 This Study* This Study 

Superposition Superposition Overlap 

Cu 8.47 8.32 9.83 7X8 5.45 1(L50 1*2 
On 6.56 5.93 7.03 SJ)9 5.17 8.11 188 cu 6.57 6.21 7.55 129 4.72 8.68 3.70 a. 2.12 2.12 1.72 1J0 1.67 4.09 163 
Cu. 1.66 1.65 1.50 1.40 1.41 4.15 139 
C„ 137 132 120 2J9 L.76 4.84 107 
Cn 4.11 3J53 ... 3.17 3.45 1.73 0.24 c« 4.84 4.23 ... 3.40 104 151 1.46 c» 4.67 4.30 ... 3.56 3.66 3.19 1.77 

Kumaxawa and Anderton (1969]. 
* Graham and Barteh (1969J. 
iShimtxu et aL [1982]. 
4 Yeneda and Mortoka [1992]. 
* Duffy et aL [1995]. 
•(5/./3T)v»0. 
T(df/,3T)V #0. 
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Summary 

We have found that for a solid (such as NaCl) in which OLKT 

is independent of V and Cy is quasiharmonic, the inversion of 
the measured (dfi/dT)p yields reliable values of (dfi/dP)T 

modes. This provides an accurate calculation of Ks{P) and 
shear moduli up to 1.5 GPa. 

We have found that for a solid (such as MgO), where Cy is 
quasiharmomc up to very high T but <XKT is not independent 
of V at ambient conditions, the inversion leading to Ks(P) 
yields good results, but G(P) departs from experiment. 

We have found that for a solid (such as Mg2Si04), where 
QLKT is independent of V but Cy is not quasiharmonic, the 
inversion leading to Ks{P) and $(P) yields good results, but 
G{P) departs from experiment. 
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RUS Measurements of Nickel 
Alloys at High Temperature 

J.D. Carnes 
Don Isaak 

Orson Anderson 

Institute for Geophysics and Planetary Physics 
UCLA 
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Overview of Topics 

Discussion of sources of funding and 
interest for these RUS projects 
Materials studied 

Resonant mode identification issues 
RUS spectra and resultant moduli 
determined as a function of temperature 
Results/conclusions 
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RUS Projects involving nickel 
alloys at UCLA 

Project in collaboration with Concurrent 
Technologies Corporation (CTC), an 
independent nonprofit organization, serves 
as a national resource to the industrial base 

Project in collaboration with Prof. Alan 
Ardell of the materials science dept, 
UCLA 
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CMSX4 Mode ID Using 
Cy from Nickel 
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CMSX4 (Result of First Mode Assignments) 
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CMSX4 Mode ID (Final Calculated Spectrum) 
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CMSX6 (Comparison with Nickel) 

Cu: 250.8 GPa (Alers et al.) 
C12: 150.0 
C^: 123.5 
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CMSX6 Mode ID (Final Calculated Spectrum) 
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Amplitude (arbitrary units) 
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Amplitude (arbitrary units) 
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Cu for CTC Nickel Alloys 
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C44 for CTC Nickel Alloys 
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Derivatives of Elastic Moduli of 
Nickel Alloys Studied 

CMSX-4 CMSX-6   SPEC2 
dC„/dT 

dC12/dT 

dCJdl 

dCs/dT 

dKs/dT 

-0.043 -0.045 -0.038 

Oil! 0.973 0.999 
-0.010 -0.013 -0.010 

0.863 0.882 0.974 
-0.037 -0.037 -0.032 

islf 0.997 0.997 
-0.016 -0.016 -0.014 

§986 0.986 0.998 
-0.021 -0.024 -0.019 

Ö.961 0948I 0.948 
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Result/conslusions 

Temperature derivatives determined 
RUS has proven useful in the 
characterization of materials whose initial 
Cjj's were not well known. 
RUS studies are valued in the 
characterization of new metal alloys 
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Los Alamos 
Los Alamos National Laboratory 
Los Alamos. New Mexico 87545 

Response of the Elastic Moduli of Lao.83Sr0.i7Mn03 

to Magnetic fields near the CMR Transition 
Temperature 

T.W. Darling. A. Migliori, JJ. Neumeier, E.G. Moshopoulou, 
J.D. Thompson, J.Sarrao* 

Los Alamos National Laboratory, Los Alamos, NM 87545 
*NHMFL, Florida State University, Tallahassee, FL) 

Cij couple to free energy by second strain derivative - 
sensitive to symmetry and coupling 
RUS measures the "complete" elastic tensor (as 
complete as the model) 
Strong electron-spin-lattice effects in CMR- Jahn-Teller 
etc 

1 RUS primer 

2 Sample - preparation and analysis 

3 RUS data 

4 Discussion 
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Orthoitiombic 

Rhombohedral Monodinic 

Figure 1  Shown are the parent FCC-like unit cell and the rhombohedral and orthorhombic derivative 
structures and their orientation with respect to cubic axes. The arrows on the left cube indicate the direction 
of the distortion that develops to take the cubic structure to rhombohedral. The two sets of arrows on the 
right cube show the distortion directions that can take a rhombohedral structure and deform it to monoclinic 
or to orthorhombic. Mn ions are at the corners, the center of the faces, the center of the edges and the body 
center of the laree cube. 
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Figure 4 Shown are the Ma ions, a few of the oxygen 
octahedra and the simple cubic parent unit ceil. 
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Sample preparation and characterization 

• Optical-float-zone method used 

• Starting materials La203> SrC03 and Mn02 mixed, ground 
and reacted at high temperature then isostatically pressed 
into rods 

• The crystal was grown in air at a rate of 6 mm/hour 

• Powder x-ray diffraction detected no second phase 
Refined cell parameters (Hex) were: a = 5.545(1) A and c 
= 13.382(2) A. The x-ray density was 6.51427 g cm-3 

• A single grain was cut and Laue diffraction was used to 
orient the single crystal to the almost cubic lattice planes. 

M=0.0179g,   Densjty=6.364g/cm 
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/\to«*(MHz> /F«lMHz) %error k i einzelne.. Zrln/ftrlnc,,      2cln/7cinc 
0.835100 0.832982 -0.25 4 I 0.06' -0.04 0.98 
0.849000 0 849199 0.02 6 1 2.77 •1.88 0.11 
0.912100 0.911084 -0.11 7 1 2.75 -1.86 0.11 
1.025500 I 028140 0.26 5 1 3.18 -2.18 0.00 
1.178600 1.177794 -0.07 5 2 3.15 -2.15 0.01 
1.184900 1.182407 -0.21 1 1 2.91 -1.99 0.07 
1.242000 1 247010 0.40 4 2 0.30 -0.21 0.91 
0.000000 1.265354 0.00 6 2 2.28 -1.47 0.19 
1.268200 1.268338 0.01 3 1 0.62 -0.42 0.80 
1.278100 1.280845 0.21 5 3 3.18 -2.18 0.00 
1.299200 1.297507 -0.13 2 1 1.69 -1.15 0.47 
1.323600 1.317075 -0.49 8 1 1.41 -0.96 0.55 
1.491900 1.493765 0.13 2 2 0.77 -0.49 0.72 
1.541500 1.542163 0.04 1 2 2.71 •1.86 0.15 
1.561300 1.562077 0.05 7 2 2.47 -1.63 0.16 
1.586500 1.588603 0.13 8 2 0.17 -0.09 0.93 
RMS error =0.2 159% 

c„( I0'-dynes/cm:)= 2.2006x2.28% 
t',,(10,2dynes/cm:)= 1.5142=3.35% 
cu( 1012dynes/crrn= 0.6683=0.12  % 
B(10':dynes/cnr)=l.743 (computed from the moduli) 

T=290K 
mass = 0.0179 gm (p= 6.364 g/cm3), dimensions: 0.17201 cm x 0.13944 cm x 0.11727 cm 

Table 1. Shown are the measured and fitted resonance frequencies, the mode type (k), the mode harmonic 
(i). and the logarithmic derivatives of frequency with modulus. These derivatives describe accurately the 
fractional dependence of each mode frequency on each elastic modulus. Also shown are the fitting errors, 
the elastic moduli (B is the computed bulk modulus) and their (larger than the RMS) errors determined 
from the fit. and the sample size and mass. 
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Magnetic Effects and RUS 

J.L. Sarrao 
LANL 

Collaborators: 

A. Migliori 
T.W. Darling 
D. Mandrus 
Z. Fisk 

I. Magneto-elastic effects 

II. Field-dependent effects 

HI. Details and problems particular to RUS 

IV. Prospects for the future 
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Resonant frequency of single-crystal fragment 
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Effects above the Nee! transition in applied field 
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FIG. 3. Phase diagrams obtained from velocity measure- 
ments for three different orientations of the field: H-Lc: and 
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■, Hm •, H,2l and A, T«. The insets show our results for 
T*(H) and H<i(T) from velocity measurements (A) in com- 
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the insets for the different samples. 
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Figure 1: Change of sound velocity as a function 
of temperature in B—TTesla for three doping levels 
(B|c, k|candklu). 
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0 

CQ 

T/K 
Figure 2: Phase diagram of the effective field 
Beff»B-cos4 vs. T* with BJe (D), by rotating the 
field B«7Tesla in the (110)-plane (O, O and A) 

or in the (HO)-plane (■). Open symbols: 28MHz, 
full symbols: 8.9MHz, <(>:±(B,c). 
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ELECTRON-PHONON INTERACTION 

LaBg T<<V-CO> 
Laßg     Camode 

295 

B  (T) 
Fig. 40. Acoustic quantum osculations in LaB6 for the (cn-cl2)/2 and cu modes for different 
geometries (Suzuki et al. 1985a). 
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w i i,j,kj °*j   a*l 
dV, 

The "standard" problem 

Computational time =1   (1) 

W eft/, 

Electric field effects 

Computational time = 16  (7.6) 

solved by Ohno [Phys. Chem. Minerals 17 (1990) 371] 
0.5% effects on frequencies 

VermeJ.'.ulj Vw       *;<ioma3*^   Wior 

w 
I 1 

Magnetic field effects 

Computational time = 64  (19) 

cTg # ajf due to torques 
(so 81 elastic constants — generally ignored in pulse-echo) 

dV, 
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Experimental Field Alignment 

• Pulse-echo 

M 

T. 

. RUS 

Rotatable probe head 

W 

RST 

/N 

W 
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High Temperature RUS and the 
Elastic Constants of Steel 

Tim Darling 
Philip Armstrong 

Albert Migliori 

Raj Vaidya 
Carolynn Scherer 

Los Alamos National Laboratory 

♦ RUS Application 

♦ "Real Time" following of elastic constants during 
heat treatment 

♦ Improved elastic constants for 51XX grade steels 
as a function of temperature 

0 Comparison of two resonance methods- RUS and 
rod resonance 

0 Comparison of single mode vs full fit 
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NMM Huunh Ubwateriis, IttMdwn StttJ ewp. 

20 SO 
Cooling Time, See 

Diffusive transformations (slow, high temperature 
activated) compete with non-diffusive (Martensitic, 
fast, low temperature activated) transformations to 
produce a complex combination of phases, 
microstructures and strains. 
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Samples: 5180, 5140, 5120 steel (assume isotropic) 

RUS: RPR   4.8x5.0x5.2 mm 

Rod: VA diameter x 4" long 

Procedure: 

1. heat treat and quench to get "100%" phases 

2. measure resonance frequencies with temperature 

♦ RUS: Lithium Niobate/Alumina metal bonded 
transducers 

T < 500C 

Measure and fit 40-50 lines -> Cn and C44 

Sensitive to symmetry and homogeneity 

♦ Rod: Centre node mount, capacitive/magnetic 
transducers 

K1000C 

Measure fundamental longitudinal and 
shear modes -> E and G (Young's and 
shear modulus) 
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CAPACITOR PLATE 
FOR LONGITUDINAL 
MODE PICKUP £T} 

MAGNET AND 
PICKUP COIL FO 
SHEAR MODE 
(DETECTOR) 

ROD SAMPLE 

CENTER SUPPORT 

G 

> o w 

o 
CO 

MAGNET AND 
DRIVE COBL FOR 
SHEAR MODE 
(DRIVER) 

CAPACITOR PLATE 
FOR LONGITUDINAL 
MODE DRIVE 

Schematic of the Rod Resonance technique 
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Transducer 

* - Stainless to stainless spot weld Alumina ceramic 

Mesh Stainless steel 
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Table 4. RR measurements of Young's modulus - 5180 Pearlite (normalized) 
Temperature (C) Length/L20 Longitudinal 

Frequency( kHz) 
Young's Modulus 
(GPa) 

20 1.0000 25.581 211.3 
77 1.0009 25.626 211.8 

108 1.0014 25.362 207.4 

147 1.0020 25.277 205.9 

238 1.0035 24.935 200.0 

343 1.0053 24.429 191.7 

345 1.0053 24.423 191.6 
350 1.0054 24.389 191.0 
453 1.0072 23.819 181.9 
523 1.0085 23.226 172.7 

556 1.0091 23.113 170.9 

21 1.0000 25.629 212.1 
27 1.0001 25.633 212.1 
104 1.0013 25.445 208.8 
222 1.0032 24.992 201.0 
501 1.0081 23.561 177.8 
695 1.0117 20.378 132.5 
694 1.0117 20.358 132.3 
658 1.0110 22.108 156.1 
615 1.0102 22.53 162.2 
602 1.0099 22.743 165.3 
549 1.0090 23.166 171.7 
20 1.0000 25.656 212.5 
653 1.0109 22.295 158.7 
805 1.0129 19.398 119.9 
803 1.0129 19.438 120.4 
789 1.0124 19.638 123.0 
765 1.0117 19.913 126.5 
745 1.0110 20.103 129.0 
725 1.0104 20.273 131.3 
726 1.0104 20.283 131.4 
717 1.0102 20.383 132.8 
716 1.0101 20.412 133.2 
716 1.0101 20.383 132.8 
706 1.0098 20.453 133.7 
696 1.0095 20.643 136.3 
696 1.0095 20.803 138.4 
695 1.0095 20.933 140.1 
695 1.0095 21.013 141.2 
694 1.0094 21.193 143.7 
694 1.0094 21.413 146.6 
691 1.0093 21.734 151.1 
693 1.0094 21.777 151.7 
692 1.0094 21.813 152.2 
692 1.0094 21.82 152.3 
676 1.0113 20.68 136.5 
641 1.0107 21.659 149.9 
631 1.0105 22.07 155.6 
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Sample msOl 5180 steel ms per TWD 250C 
mass3 0.8919 gm rho= 7.643 gm/cc fraction of 

Cll C44 
n f-expt f-model %err weight k i df7d(moduli) 
1 0.273840 0.272363 ■0.54 1.0 4 1 0.00 1.00 
2 0.303360 0.302188 -0.39 1.0 4 2 0.00 1.00 
3 0.367920 0.369609 0.46 1.0 6 1 0.05 0.95 
4 0.380640 0.380712 0.02 1.0 7 1 0.06 0.94 
5 0.383040 0.384115 0.28 1.0 3 2 0.01 0.99 
6 0.393230 0.393999 0.20 1.0 2 1 0.01 0.99 
7 0.000000 0.399060 0.00 0.0 1 1 0.04 0.96 
8 0.400830 0.401842 0.25 1.0 8 1 0.01 0.99 
9 0.000000 0.434440 0.00 0.0 5 1 0.00 1.00 
10 0.444150 0.443232 -0.21 1.0 6 2 0.32 0.68 
11 0.000000 0.446697 0.00 0.0 5 2 0.00 1.00 
12 0.000000 0.457719 0.00 0.0 5 3 0.00 1.00 
13 0.469230 0.468069 -0.25 1.0 8 2 0.15 0.85 
14 0.000000 0.468456 0.00 0.0 7 2 0.29 0.71 
15 0.479870 0.479327 -0.11 1.0 2 2 0.15 0.85 
16 0.000000 0.479395 0.00 0.0 1 2 0.30 0.70 
17 0.498000 0.497998 0.00 1.0 3 3 0.15 0.85 
18 0.000000 0.535291 0.00 0.0 8 3 0.01 0.99 
19 0.544800 0.542180 -0.48 1.0 5 4 0.35 0.65 
20 0.000000 0.552534 0.00 0.0 5 5 0.34 0.66 
21 0.553120 0.554548 0.26 1.0 4 3 0.05 0.95 
22 0.556240 0.555254 •0.18 1.0 2 3 0.01 0.99 
23 0.000000 0.566521 0.00 0.0 6 3 0.10 0.90 
24 0.000000 0.569224 0.00 0.0 7 3 0.09 0.91 
25 0.571580 0.569744 -0.32 1.0 1 3 0.08 0.92 
26 0.576260 0.574978 -0.22 1.0 3 4 0.01 0.99 
27 0.000000 0.618932 0.00 0.0 7 4 0.08 0.92 
28 0.000000 0.619188 0.00 0.0 1 4 0.10 0.90 
29 0.000000 0.626533 0.00 0.0 6 4 0.05 0.95 
30 0.648000 0.650363 0.36 1.0 1 5 0.09 0.91 
31 0.658500 0.661049 0.39 1.0 7 5 0.09 0.91 
32 0.661200 0.663693 0.38 1.0 6 5 0.10 0.90 
33 0.703800 0.705123 0.19 1.0 5 6 0.89 0.11 
34 0.706200 0.706173 0.00 1.0 6 6 0.06 0.94 
35 0.000000 0.714476 0.00 0.0 3 5 0.11 0.89 
36 0.000000 0.721312 0.00 0.0 2 4 0.09 0.91 
37 0.730800 0.730772 0.00 1.0 7 6 0.06 0.94 
38 0.000000 0.733186 0.00 0.0 8 4 0.07 0.93 
39 0.000000 0.736673 0.00 0.0 4 4 0.00 1.00 
40 0.738900 0.739970 0.14 1.0 3 6 0.09 0.91 
41 0.000000 0.742701 0.00 0.0 2 5 0.10 0.90 
42 0.000000 0.743813 0.00 0.0 5 7 0.10 0.90 
43 0.747900 0.747665 -0.03 1.0 8 5 0.10 0.90 
44 0.751200 0.749611 -0.21 1.0 1 6 0.06 0.94 

Cll cl2 c44 
2.5530           1.0972 0.7279 

dl d2      d3 
0.51150 0.49000 0.46560 

loop* 5 rms error» 0.2799 % 
chisquare increased 2% by the following % changes in independent parameters 
Cu : 0.40% 
C«  : 0.09% 
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220 

Variation of Young's modulus (E) from RUS and RR data 
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430 
5180 steel sample A9 - resonance frequencies 

TWD 4-14-96 
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Pass 1 - open shapes 
Pass 2 - solid shapes 
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5180 steel sample A9 T=30C, First pass 

390000 400000 410000 

Frequency Hz 

TWO 4-14-06 

420000 
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5180 steel sample A9 T=30C, Second pass TWO 4-14-99 

400000 410000 420000 

Frequency Hz 

430000 
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+   Fulfilled the "engineering" aspect 

-» E(T), G(T) for a number of phases 

Happy agreement between RUS and rod method 

?   Did not look at attenuation - this may be the most 
important piece of ultrasound information when 
watching transitions in microstructured materials 

? Connection between observed splitting and 
distortion of the RPR 
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RESONANT ULTRASOUND STUDY OF TEXTURE 
IN POLYCRYSTALLINE MATERIALS* 

Keir Foster and Robert G. Leisure 
Department of Physics 

Colorado State University 
Fort Collins, CO 80523 

and 

George Alers 
NIST 

Boulder, CO 80303 

* Work supported by the Colorado Advanced Materials Institute 
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OUTLINE 

I. Introduction 

II. Effect of texture on elastic constants of polycrystalline 
materials. 

III. RUS measurements on textured copper: elastic constants and 
orientation distribution function coefficients. 

IV. Ultrasonic pole plots 

V. Conclusions 
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INTRODUCTION 

Texture 
Nonrandom orientation of crystallites (grains) in 
polycrystalline aggregates. 
Arises in fabrication processes (rolling, drawing), welding, 
etc. 
Has strong effects on formability, and on nondestructive 
testing. 

Methods of Investigation 
X-ray diffraction 
Neutron diffraction 
Ultrasound 

Objectives of Present Study 
Use Resonant Ultrasound Spectroscopy to investigate the 
weak anisotropic elasticity due to texture. 
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TEXTURE AND ELASTIC CONSTANTS 

Sample and Crystallite Coordinates 

Crystallite 

Sample 

For plates, x{ = "rolling direction, x2 = "transverse direction", and x3 

"normal direction. 

Euler Angles 

Sample Coordinates 

rystallite Coordinates 
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•      Transformation between the crystallite and sample coordinate 
systems 

Vector 

xi=Z?fixj 
7=1 

Elastic constant tensor 

,      3    3   3   3 
Cijkl = X IZI VV^A™ 

p=lq=]r=ls=l 

The transformation matrix is 

cos^cos^cos^-sin^sin^     sin^cos#cos^+cos^sin^    -sin#cos^ 
-cos^cos^sin^-sin^cos^   -sin^cos#sin^+cos^cos^    sin#sin^ 

cosysin# sin^sin# cos# 
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•      Elastic constants of c rystallite in sample coordinate system 

Transform the crystallite elastic constants to the sample coordinate 
system. 

Results for a crystallite with cubic symmetry. 

ni _(ni   2Ö1 ^=44+^4+44 
C  '-C  -2Cr r2 ~a\2a22 +ai2^23 + a22^23 

JO         11             3 
r, = a?.,a?~ + a,2-<a£, + a2 a2, 

3        ID  15       13   JJ       23   JJ 

C44 =(-44 + ^r4 r4 = ai22ai23 + a22a23 + a32a33 
C55=C44 + °*5 r5=aiVn+a23a22l+4a32l 

^66 =Q4 + (^r6 r6=aha\2 +al\aTl +a32ia32 
V—"^"»   "~ ^^1 "7    1   ^^   7 /         li   IJ        22   2O        J2   JO 

13 ==    12 ~^~     8 rfi = a^tf2 +a%,ah +a2 a 2„ 0        li   lo        21   1J       ol   JJ 

^]9           ^|9    '"^'Q r9 =4^122 +a21^22 +a31^32 

c=q, ~~ ^12""™ •" ^44 

Note: Other C.. are ignored because orthorhombic symmetry for the 
sample will be assumed later 
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•      Orientation distribution function H>(£,I|/,(|)) (£ = cos(8» 

wi£$9$)didtyd$ = probability of finding crystallites with orientations 
between (ijj,8,(j>) and (i|j + dty ,0 + dQ, $ + d§). 

Sample Coordinates 

He Coordinates 

It will be convenient* to expand >v(?,i|/,(j>) 

l=0m=-ln=-l 

where the 2lmn are generalized, associated Legendre functions. The W^ 
are the Orientation Distribution Coefficients (ODC's) and are 
determined experimentally. 

eR.-J. Roe, J. Appl. Phys. 36,2069 (1966) 
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The < CfJ> of the sample, in the Voigt approximation, will be the 
average of the C- over the orientation distribution function. These 
will be of the form 

< Cn >=< Cn > -2 < Cxrx > 

etc. 

To calculate, expand the rt 

l=Qm=-ln=-l 

im y/p-in(j) 

Calculate the averages 

2K 1 2K 

o-io 

oo m=+ln=+l 
=4X

2
Y y JR.' w. 
Lu L-i   L-a   Imn   Imn 
l=Qm=-!n=-l 
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Finally! 

^^^^y^w^w^ 
<Cr,'>=A+2/i+ \2Ü<C>rArrr    jM 

"35       ^400"+"—3~ "420+-3~ IfL 

<C~>=X+2/J.I 
32V2<C>/z2l 

35 
W 
""400 

<C,'>=/i- \6ä<C>7f\w     \5W , 
35      f 

<q5 >=//- —„— F^-JyW 35      I 

<C„>=M+ ̂ )ft-»J 

N"4< 

<C^ >=A+ '^^y^-^u 

The theoretical values of the Lame constants X and JLX, and the anisotropy 
constant <C>, depend on the averaging methods used (Voigt, Reuss, 
Hill, etc.) for the texture-free material. The sample is assumed to have 
orthorhombic symmetry. 
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Resonant Ultrasound Spectroscopy 

I.   Sample-Transducer 

Arrangement 

-2 m 

i 
1 -2 mm 

iamond 

Piezoelectric 
Transducer 

Sample 

II.   Spectrometer 

Transmitter 

Receiver  ^ 

III.   Typical Modes 
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Olin Type Cl 10 polyciystalline copper 
0.025 

0.020 

Oi <r* 0.015 - 
o 

0.0006 - 

0.0005 
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0.000 
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EXPERIMENTAL RESULTS FOR OLIN TYPE Cl 10 COPPER 
(Copper + 0.021 wt % Oxygen) 

Measurements on three, independently prepared, copper samples at 
room temperature. 

Elastic 
Constant 

Sample 1 Sample 2 Sample 3 Mean % Error 

C'n(GPa) 199.7 198.4 201.9 200.0 0.51 

C^GPa) 199.9 199.1 201.0 200.0 0.28 

C'33(GPa) 195.7 197.6 197.4 196.9 0.31 

C'44(GPa) 44.06 45.24 45.47 44.96 1.02 

C55(GPa) 44.04 45.04 45.66 44.91 1.05 

C66(GPa) 44.59 45.79 45.41 45.26 0.78 

C^GPa) 109.8 107.5 112.0 109.8 1.18 

CI3(GPa) 109.2 106.1 109.0 108.1 0.93 

C'12(GPa) 108.6 111.7 109.7 110.0 0.82 

A least squares fitting of the sample 1 results to the theoretical expressons, 
using <0 = -100.25 GPa, gives, 

™400 -2.36x10"* 

W420 +4.56 x 10"5 

"440 -5.11 x 10°' 

X (GPa) 109.1 

u (GPa) 44.37 

Computed values using single crystal 
C„ for copper. 

Voigt 
Average 

Reuss 
Average 

X (GPa) 101.5 111.0 

u (GPa) 54.6 40.0 
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Using the values of the W's, X and u we compute the C^ and compare to the 
results for sample 1. 

Experimental Computed 

C„(GPa) 199.7 198.1 

C22(GPa) 199.8 198.0 

C'33(GPa) 195.7 198.2 

C^GPa) 44.06 44.26 

C'55(GPa) 44.04 44.17 

C'66(GPa) 44.59 44.34 

C'^GPa) 109.8 109.1 

C'I3(GPa) 109.2 108.9 

C'12(GPa) 108.6 109.1 

RMSEn-or = 0.7% 
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•      Reciprocal lattice vector orientation distribution function 
tärtd (C = cos(Xi)) 

Consider a reciprocal lattice vector ts 

'Z 

-*\/ t, 
\   X 

s    \       1 v.. 
-Sv-i 

II i 

Crystallite Coordinates Sample Coordinates 

q,{g,rj)dgdr]= Probability to find vector tj between (x,r|) and (x+ d% ,T\ 

It can be shown* 
1 ?,-(^) = ^+S(Hz,0^ 

S(Ei9^) = ^ PfiZJ+jLpfiZJcosi^) E, =cos(0) 

where P"^) are the normalized, associated Legendre functions. 

•      Ultrasonic pole plots 
Contour plots of qi^^i) for a particular reciprocal lattice vectors tj 

*M. Hirao, K. Aoki, and H. Fukuoka, J. Acoust. Soc. Am. 81, 1434 (1987). 
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[100] pole figure for 

Olin type C110 copper 

(Sample 1) 

Unanneaied 

Rolling 

Direction 
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[100] pole figures for 

Olin type C110 copper 

(Sample 1) 

unannealed 

Annealed at 250 C 

for 1 hr. 
Rolling 

Direction 

Annealed at 300 C 

for 1 hr. 
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[110] pole figures for 

Olin type C110 copper 

(Sample 1) 

Unannealed 

Annealed at 250 C 

for 1 hr. 

Rolling 

Direction 

Annealed at 300 C 

for 1 hr. 

135 



TRANSPARENCY   17 

CONCLUSIONS 

PRESENT RESULTS 
RUS elastic constant measurements on Olin type Cl 10 copper 
described by orthorhombic elastic constant matrix, but indicate 
very small anisotropy - in disagreement with sound velocity 
results. 
Cn' appears to deviate from the theoretical expressions. 

OUTLOOK 
Measurements on materials with stronger anisotropy needed, with 
a careful comparison to ultrasonic velocity measurements. 
RUS has potential to characterize texture. 
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COMPARISON OF RUS MEASUREMENTS 
with 

Conventional Methods 
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COLLABORATORS 

M.C. RENKEN 

K.W. HOLLMAN 

S. KIM 

N. SIZOVA 
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TECHNICAL APPROACH: 

• ESTABLISH "TRUE" LONGITUDINAL-WAVE VELOCITY \N 

A HOMOGENOUS ISOTROPIC SPECIMEN USING A 

NUMBER OF SHORT-PULSE EXPERIMENTAL 

GEOMETRIES AND SIGNAL-ANALYSIS METHODS. 

• ESTABLISH LONGITUDINAL VELOCITY USING RUS ON 

THE SAME SPECIMEN. 

CALCULATE THE ERROR 
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WE NOW USE RESONANT ULTRASONIC 

SPECTROSCOPY FOR ROUTINE DETERMINATION OF 

ELASTIC-STIFFNESS COEFFICIENTS.   IT IS THEREFORE 

OF INTEREST TO ESTABLISH THE ACCURACY OF THE 

METHOD. 
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COMPONENTS OF ACCURACY 

ACCURACY 

BIAS 

PRECISION 
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Fused-Silica Specimen 

< 25.4 mm > 

/N 

25.634 mm 

Ni/ 

p-  2.202  g/cm 
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SHORT-PULSE EXPERIMENTAL GEOMETRIES 

(PULSE-ECHO) 

WATER-IMMERSION 

BUFFER-ROD 

•     DIRECT-CONTACT 
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Some Physical Configurations 
(Pulse-Echo) 

(1)        Liquid Immersion 

(2)       Buffer-Rod 

XDucer 

Sample 

Sample 

(3)       Direct Contact 

XDucer 

Sample 
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SHORT-PULSE SIGNAL ANALYSIS METHODS 

PULSE-ECHO SUPERPOSITION/VISUAL OVERLAP 

AMPLJTUDE-SPECTRUM/PI-POINT 

PHASE-SPECTRUM/DECONVOLUTION 

PULSE-ECHO CROSS-CORRELATION/AUTOMATED 

TIME-FREQUENCY/(UNDER DEVELOPMENT) 
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RESOLUTION OF SHORT-PULSE METHODS 

v=L 

At 

1) L is known to 0.008% 

2) At is affected by Bandwidth, sampling rate and signal to 
noise (0.04%) 
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"As Measured" Velocities (No Corrections) 

Fused Silica 
Ledbetter's 
(25.634 mm) 

Physical 
Confinnratinn 

Overall Chart 
No Corrections 
Signal Procsssinq 
Mfifoad 

(mmAjs) 

Pulse-Echo 

Immersion Tank 
Pulse-Echo Confiq. 5.9309354 

Dry Contact PZT 
Pulse-Echo Confiq. 
Dry Contact Quartz 
Pulse-Echo Confiq. 

Dry Buffer Rod 
Pulse-Echo Confiq. 

Superposition 
Amplitude Spectrum 

5.827608667 

Pi-Point 
Phase-Spectrum 

5.927888889 

OeconvolutJon 
Pulse-Echo 
Cross-Correlation 

5.9247602 

5.928316667 

5.93035 

5.874125 

5.838533333 

5.9144 

5.809666667 

5.9221 

5.935156707 

Time/Frequency 
Analysis 

5.870609784 

5.846210537 

5.929244444 

5.933796296 
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Physical Sources  of Error 
(Short-Pulse Methods) 

(1) 
-M I* 

fe^ s 

Transducer has finite thickness 

(2) Transducer has finite diameter 

(3)       Temperature Differences 

(4)       Pulse-Shape / Bandwidth Effects 
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Velocities (with Corrections) 

Fused Silica Overall Chart (mnvm) 

Ledbetter*s With Corrections 
(25.634 mm» Signal Proeessinn 

Mfitnod Pulse-Echo AmoiitudB Soectrum Phase-Soectrum Pulse-Echo ■nme/Freouencv 

Physical Suoemosition Pi-Point Oeconvotution Cross-Correlation Analysts 

Hnrrfinuration Immersion Tank* 
Pulse-Echo ContiQ. 5.9309354 5.927888889 5.9247602 5.935156707 5.929244444 

Drv Contact PZT 
Pulse-Echo Config. 5.B42104123 5.87992341 5^20362499 5.885337594 

Dry Contact Quartz 
Pulse-Echo Contiq. 5.93256504 5.914261234 5.885182892 8432682949 

I 
Drv Butter Rod* 
Pulse-Echo Confia. 5.9303SI I                 5.9221 5.933796296I 

* Without Diffraction Correction (estimated to be less than 0.1%) 

Coefficient of thermal expansion is 5.5e-7. Temperature Range = 2.7 C 
Temperature correction is less than 0.01 % 
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"TRUE" Value for Velocity = 5931.0 m/s 
(as calculated from below) 

Average Velocity without outliers 
 with corrections 

(mm/us) 
5.931016935 

Standard Deviation without outliers 

0.00336829 

With Error of +/- 0.11% using a 95% confidence Interval 
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Short-Pulse Velocity Comparison 

Velocity 

Immersion Tank 
Pulse-Echo Config. 
Pulse-Echo Superposition 

Immersion Tank 

Amplitude Spectrum 
Pi-Point 

Pulse-Echo Config. 

(mm/us) 

5.930935 

5.927889 

Residual 

0.001375 

Immersion Tank 
Pulse-Echo Config. 
Phase Spectrum 

Immersion Tank 
Pulse-Echo Config. 

5.92476 

0.05274 

Dry Contact PZT 
Pulse-Echo Config 

Velocity Residual 
(mm/us) 

Pulse-Echo Superposition 

Dry Contact PZT 

Cross-Correlation 
5.935157 

Immersion Tank 
Pulse-Echo Config. 
Time/Frequency 

Al Buffer Rod (Dry, PZT) 
Pulse-Echo Config, 
Pulse-Echo Superposition 

Al Buffer Rod (Dry, PZT) 
Pulse-Echo Config. 
Phase Spectrum 

Al Buffer Rod (Dry. PZT) 
Pulse-Echo Config 
Cross-Correlation 

0.105492 

Pulse-Echo Config 
Amplitude Spectrum 
Pi-Point 

5.842104 

5.879923 

Dry Contact PZT 

0.069799 

Pulse-Echo Config. 
Phase Spectrum 

Dry Contact PZT 
Pulse-Echo Config. 
Cross-Correlation 

1.499116 

0.861463 

5.920362 

5.885338 

5.929244 0.029885 

5.93035 0.011245 

Dry Contact Quartz 
Pulse-Echo Config 
Pulse-Echo Superposition 

Dry Contact Quartz 
Pulse-Echo Config, 
Amplitude Spectrum 

5.9221 

5.933796 

0.150344 

0.046861 

Pi-Point 

Dry Contact Quartz 
Pulse-Echo Config. 
Phase Spectrum 

Dry Contact Quartz 
Pulse-Echo Config. 
Cross-Correlation 

0.179639 

0.770177 

5.932565 

5.914261 

0.026102 

0.28251 

5.885183 

5.932683 

0.772786 

0.02809 
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RUS  Experimental  Geometry 

Pinducers 

n 

Specimen 

U 
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RUS SIGNAL ANALYSIS WE USE METHODS 

DEVELOPED BY P. HEYLIGER (COLORADO STATE 

UNIVERSITY) CALCULATES ELASTIC-STIFFNESS 

MODULI FROM OBSERVED RESONANT-FREQUENCY 

SPECTRUM.   THE METHOD CAN HANDLE A 

VARIETY OF SHAPES AND CRYSTAL SYMMETRIES, 

INCLUDING TRIGONAL. 
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n r 

h JU 

i i 

100 200 

Frequency (kHz) 

Fused silica 
JUmpia position: cylinder dagenai 
T- 23.2 C 
FB«: jfieajra 

taputveft-O« 7V <**5000 
Fnouancytvinep: «WOOkHr 
CniiitfF*1*" nous 
28 JAN 1087 
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ERRORS IN RUS METHOD 

v\ 

c 
p 

VALUE OF C IS IMPACTED BY TRANSDUCER 

CLAMPING AND SPECIMEN GEOMETRY (0.08%) 

p IS KNOWN TO 0.004% 
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COMPARISON OF VELOCITIES 

SHORT-PULSE: 5931.2 m/s ± 6.7 m/s 

which is 0.11 % with a 95% Confidence Interval 

RUS: 5939.8 m/s 

ERROR is 0.15% 
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ANISOTROPIC MATERIALS 

COMPARE RUS ELASTIC STIFFNESS 

CONSTANTS FOR HIGH-QUALITY SILICON 

SPHERE WITH THOSE OBTAINED BY 

MCSKIMIN (0.1%) 4 DECADES AGO. 
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Silicon's Voigt stiff na 

present literature ratio. 

**11 165.61 ±0.03 165.78 0.9990 
Cl2 63.84±0.03 63.91 0.9989 
C44 79.55 ±0.01 79.61 0.9992 

c 50.89 50.94 0.9990 
B 97.76 97.87 0.9989 
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NEED FOR ACCURATE VELOCITY Ä 1EASUR 

Internal Sfrain 0.1% 0.01% 

Pressure Effects 0.1% 0.01% 

Texture 1% 0.1% 

Phase Mixtures 0.1% 

Hardness 0.1% 

Defects 0,"1% 0.1% 
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crystals. 

D. Dasgupta, J. R. Feller, C. Hucho*, 
Bimal K. Sarma and M. Levy 

U\*M 
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University of Wisconsin-Milwaukee 

Work sponsored by Office of the Naval Research 

Present address : FB Physik, Germany 
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OUTLINE 

Sampled CW technique 
Attenuation vs Magnetic Field 

• At low magnetic fields (< 0.5T) 
• At high fields upto 1.6T 

• Attenuation vs Temperature in different 
constant fields 
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What we do .. 

Ultrasonic studies on high temperature superconducting 
single crystals. 

Sampled CW technique. 

Setup schematic : 

B 

RF Contact 

Fine threads 
of GE Varnish 

YBCO crystal 

Fine gold leads 
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How we do it... 

To sample Fast gated boxcar 

Excitation frequency : 5 MHz 

^|—- Longitudinal velocity ~ 5000 m/s    X 

♦^—-Typical crystal thickness : 50 p.m 

n * long wavelength limit 

bulk measurement 

1 mm 

Current densities : 
Sampled CW method 
Transport measurement 

10 "5 A/cm2 

0.5 A/cm2 

Attenuation units 1 dB/j^sor2dB/cm 

Sensitivity 10 4dB/ns 
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General   Pn>L fk 

0*045 

Applies!    M^QoeÜc 
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( W // a-b  plane j   Ts 8I^S5 K) 

0.0193 

CO 

o 
H 
<: 

0.0191   - 

0.0189 

0.0187 

0.0185 

3-1    y 
-2 p(56    / 

c o 
c4 

i-3 y 4) 
ts 

^60 «(äBI 
.2-4 

• 
*•*? «•• 

-1.4 -1.2 -1.0 -0.8  -0.6 -0.4 -0.2   0.0 

log(B) 

s 

*>+f~ 
WS— 

•v 
A*    • 

o.o 0.1 0.2 0.3 0.4 

B 

-He 
BCD 

öC Cr E>    s=>   feojt   lattice 

vortex - vovtex  interaction 
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LOG oc    vs.    k>g&   otf  g<ttfgygnf   const X 

CO 

3 
-a 

CD 
O 

log B(T) 

B*     increases       witti     in^rcasin 
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^HenuaKon    vs   appl/cd -magnetic   IlmXA. 
oft   «Uffercnt    <ot>«tö T        J 

CO 
3 
S3 

0.045 

0.040 - 

0.035 - 

0.030 - 

0.025 - 

0.020 - 

0.015 ' ' ' ' 1 1 
0.0   0.2   0.4   0.6   0.8   1.0   1.2   1.4   1.6 

B(T) 
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I./ 

r 

1             1 

•                            \ 

■        l 1 

1.6 r* 

1.5 - 

1-4 - 

6 1.3 
•                                    \ 

•                                         \ 

— 

1.2 - •                                           \ 
•                                             \ - 

1.1 - 

1.0 

• 

• 
• - 

0.9 

n Q ■             1             i i      .      i      i      i      .       i ■     \i 
O.O 

8( ) 81 82          83          84          85 86 87 r 

Temperaturc(K) 
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Summary 

• Vortex pinsite interaction is dominant at low fields 
(Bapp<<UT) 

• Intervortex interaction is dominant at higher fields 
(Bapp>0.3T) 

• Low frequency ultrasound measurement shows 
transition in vortex system : 

At low fields flux lattice is soft 
At high fields flux line lattice is rigid 
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Sampled Continuous Wave Investigation 

of the Vortex State in YBa2Cu307_5 Single Crystals: 

Measurement Considerations 

University of Wisconsin-Milwaukee 

J. R. Feller, D. Dasgupta, M. Levy 

Work supported by Office of Naval Research 
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Possible Reasons for High Sensitivity 

A O 

Low current density (J < 10" A/cm ) 

J ~ 1 A/cm2 for transport (dc resistivity) measurements 

Long acoustic wavelength (X ~ 1 mm) compared with 

sample thickness (~ 50 urn) 

Low amplitude 

Weak acoustic coupling 
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Sampled Continuous Wave Measurement of YBCO 
Single Crystals 

Magnetic Field 

RF ->-a,b 

YBCO 

Ground 5 MHz Quartz 
Transducer 

GE Varnish 

Resolution ~ 5 x 10"5 dB/us 
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Weak Coupling and Sensitivity 

Define a coupling parameter: 0 < a < 1 

Effective bond area: Abond = aA^^     0 < Abond < A^^ 

Assume 

a   =at+aas am: measured attenuation 
m t s m 

a t:   transducer attenuation coefficient 
a :   sample attenuation coefficient 

Qm=      " 2(at+aas) 

Define the sensitivity as 

5Qm CD 
S„ = 

das        2(at+aas) 

Sa| is maximized by varying a: 

—^- = 0=> at=aas  => am=2at   or  Qm=-Qt 
da. £ 

For Qt = 10,000 and Qs = 300, the maximum in sensitivity occurs 
when 

a = 0.03 and Qm = 5000. 
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Weakly-coupled system 

force-free 
boundary bond 

V 
sample 

force-free 
boundary 

Ab = aAs 

Area of transducer 
Area of sample 

Effective area of bond 

Coupling parameter 

0<a<l 

quartz 
transducer 

jZ,tan(k,D/2) 
/       \ 

HI 

Ö Ö 

-w- 
-jZtcsc(ktD) _ 

■/ööüv 

jZstan(ksd/2) 

/ \ 

-jZcsc(kd) 

C0 = eA/D     transducer capacitance 

n = eA/D       turns ratio 

Acoustic impedance: Z = Apco/k 
Wave number: k = oa/v - ja/2 

The bond: 
Effective area: Ab = aAs 
Effective density: 
Effective sound speed: 
Effective impedance 

apb 
avb 
(aAs)(apb)(avb) = a3Z 

Lb(a) oc a2 

As a -> 0, 
Cb(a) oc a"4 

Lb^0, Cb^co 
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Resistance 

 I I I 1—J  
3.5 4.5 5.5 

Reactance 

1 1            1 

J 

1 

1 

r 

1 
3.5 4.5 5 

Frequency (MHz) 

5.5 
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Sampled Continuous Wave Measurements 

-i 1 r 

Measured 
Calculated 

■  L. 

4.4       4.5       4.6       4.7       4.8       4.9       5.0       5.1        5.2       5.3        5.4 

Frequency (MHz) 

0) 
■o 

Q. 
E    2 
< 

bare transducer 
weakly coupled 
strongly coupled 

 ■     ■ ■ i 

4.80     4.82     4.84     4.86     4.88      4.90     4.92      4.94     4.96     4.98      5.00 

Frequency (MHz) 
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Conclusions 

Sampled continuous wave technique demonstrated to be 
highly sensitive to vortex state transitions in YBCO 
platelets 

Factors contributing to high sensitivity: Low current 
density, long acoustic wavelength, low amplitude, weak 
acoustic coupling between transducer and sample 

Sensitivity (dQ^^ I da^J found to exhibit a 
maximum in the weakly-coupled regime 

Agreement with preliminary frequency-swept 
measurements 

180 



INTRO TRANSPARENCY 

Thin Film Characterization Using 
Resonant Ultrasound Spectroscopy 

Jason White and J. D. Maynard, Department of Physics and the Acoustics 
Program, The Pennsylvania State University, University Park, PA 16802 
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. Survey of thin film characterization techniques 

. Theory of RUS on thin films 

. Numerical calculations 

. Experimental methods 

. Conclusion 
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Thin Film Characterization 
Techniques 

I. Direct measurement of deflection in response to an 
applied force 

a. Bulge test 
b. uniaxial tension test 
c. nanoindentation 

II. Ultrasound methods 

a. Free-standing films 
b. Film and substrate 

1. SAW techniques 
2. Resonance method 4r 

III. Brillouin Scattering 
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Basis function: 

d> = 
p 

fv\l(\,\mfz\
n 

x\ ( y 

\aJ \bJ \cJ 

Matrix Eigenvalue Equation: 
2 a) Ea = Ta 
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(D2Ea = ra 
*       * 

111 

E^JJJpWr 
-1-1-1 

5f 

1   1   1 1   1      1 

-1-1 (1-a) -1-1-1 

r_._ =     a 
PV '#/ 

öjc^  9x7 -a-b-c 

a b cSO dO„ a
c
bc cc &bB dOa 

a o c 

-a-b-c -a-b(c-ctc)       k I 
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Si specimen 500x400xl00jLim 
Al film on 500x400 face from 10 to O.Oljim thick 

no film 
(Mhz) 

10|imfilm 
(%A/) 

1 \im film 
(%A/) 

0.1 urn film 
(%A/) 

0.01 ^m film 
(%A/) 

2.5791 9.571 1.031 .1037 .0104 

2.7515 7.329 .8026 .0851 .0081 

4.2864 6.823 .7433 .0740 .0074 

5.3460 8.584 .9233 .0928 .0093 

5.8465 8.106 .8757 .0881 .0088 

6.0633 3.459 .3371 .0335 .0033 

6.9605 6.489 .7060 .0706 .0071 

7.1318 3.346 .3353 .0335 .0033 

8.0462 4.291 .4204 .0420 .0042 

8.3537 3.388 .3301 .0328 .0033 

8.5105 3.367 .3224 .0320 .0032 

8.7763 7.568 .8196 .0824 .0082 

9.7565 6.496 .7075 .0709 .0071 

11.0223 6.742 .7281 .0731 .0073 
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Experimental Setup 

wwmB; 
^;;>%S>\\':fvl\-l-lvl\ 

'////////////S77M 

gold 

1 '//MWM//»/;//M»s»»A 

J- 

PVOF 

'&////>//////#////>///////////////( 

gold 

!   y///////////////^^^^7777. 

MOUNTING 
TABS 

BAKELITE 
BLOCK 

PVDF ACTIVE 
AREA 

CONDUCTIVE 
EPOXY 
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System Identification 
Alternatives to Swept 
Sine and Curve Fitting 

Ralph Muehleisen 
ASEE Fellow 

Department of Physics 
Naval Postgraduate School 

muehleis@physics.nps.navy.mil 
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Purpose 

Provide some alternative 
approaches to Swept Sines and 
Curve fitting for RUS 

Why? ....Why not? 

While the traditional approach 
works, there might be another 
approach which is better for 
some circumstances 
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Traditional Approach: 
Advantages/Disadvantages 

• Advantages 
- It works and works well 
- Not difficult to implement 

• Disadvantages 
- Not particularly fast 
- Requires some specialized 

equipment (e.g. lock-in amp) 
- Not "real time" or even close 
- Not especially suitable for 

production line testing 
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Step 1: Replace Swept 
Sine with Sampled Noise 

Wideband noise excites sample 

Instead of H(co), ARMA System ID 
methods are used to find impulse 
response h[n] and hence the discrete 
time poles and zeros of the system 

Resonance freq. and damping are 
extracted directly from h[n] and the 
standard inversion process is used to 
find Cm 
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Advantages: 

A standard high speed data acq. 
card can be used 

No lock-in amplifier is required 

Should be faster than Swept Sine 
but avoids FFT problems 

Technique has worked well for 
structural modal analysis problems, 
and and in other systems with well 
separated poles. 

Literature is replete with papers on 
ARMA system and spectral 
estimation. 
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Step 2: Replace Curve Fit 
with Adaptive Filter system 

Instead of finding resonances and 
doing a non-linear curve fit, use an 
adaptive filter technique for online 
identification of the elastic constants 

error 

Map P&Z to 
ARMA coeff. 

Generate 
P&Z from Cm 
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Operation 
- The filter is adjusted until the error 

goal is reached. 
- There are many algorithms for 

adjusting Cijkl (LMS, RLS, etc.) 
most of which are forms of a non- 
linear least squares curve fit. 

Advantages: 

- True online measures of C^are 
obtainable (great for production 
testing) 

- Adaptive algorithms are usually 
faster than their standard least 
squares counterparts because they 
use efficient routines for updating 
the error gradient estimate 
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The Step Beyond: 
Directly Determine Cijkl 

Reformulate the problem entirely - do 
not solve the variational based 
eigenvalue problem 

Instead convert the bounded elastic 
wave equation to a discrete time 
equivalent (maybe a state space 
system?) 

- Why? This might yield an exact 
ARMA filter with coefficients 
proportional to the Cijkl 

- Determination of the ARMA model 
would then determine the Cijkl. This 
might be done in real time. 
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Summary 

Use ARMA system ID methods to 
replace the Swept Sine 
- Faster determination of resonances 
- Requires only a fast data acq. board 

Use Adaptive Filters to replace 
the Curve Fitting 
- Faster determination of C}jkl 

- True online operation 

Use alternate form of problem 
- Cyu might be found directly and in 

real time. 

Techniques useful for real time 
production line testing of samples 

196 



INTRO TRANSPARENCY 

Resonant Ultrasound Spectroscopy 
Measurements for Spheres Under 

Pressure With Different Gases 

D.G. Isaak, J.D. Carries, O.L. Anderson 

UCLA 

H. Oda 

Okayama University, Japan 
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Goals 

• Use RUS to measure 3rd order elastic moduli. 

• Pressure dependence of elastic moduli from RUS. 

• Effects of gas loading on frequency shifts? 

• Test dCy/dP from pulse-echo experiments. 
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The effect of the bond has been one of the 
most abominable problems plaguing high 
precision ultrasonic measurements. There 
has been a long history in studying bond 
effects ... Conclusive results on the nature 
and the effect of the bond are still lacking." 

Spetzler, Chen, Whitehead, and Getting, Pure and Applied 
Geophysics, 141, 341-377, 1993 
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Report on Fused Silica 

• Two spherical specimens (r=2.4154,1.945 mm) 

• Three gases (helium, nitrogen, argon) 

• Two specimen-holding configurations 

• Two torsional modes, T02 and T03 
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Amplitude (arb. units) 
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Amplitude (arb. units) 
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Amplitude (arb. units) 
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Frequency (Hz) 
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f(P)-f(0) (Hz) 
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Magnitude of (3G/3P)T 
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Conclusions on Fused Silica 

• Small, measurable effect of pressurizing 
gas on dG/dP. 
(d<7 76m = 6x10"3 g"1, w-mole. mass of gas) 

• Magnitude of dG/dP is 3.70 (for m=0), 
8% higher than for pulse-echo. 

• Evidence of bond effects in pulse-echo? 
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Gas Pressure Dependence of Radiation Impedance 

of a Resonating Sphere 
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TRANSPARENCY 1 

Outline 

Parti. 

• Discussion of Isaak's RUS data on the silica 
sphere. 

• Pressure dependence of Q and resonant frequency 
oftheT02, SI 1,S00 modes. 

Part II. 

• Theoretical examination of the radiation 
impedance. 

• Dependence of resonance Q on pressure and 
molecular weight. 

• Expected frequency shift due to mass loading. 
• Comparison with experimental results. 
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TRANSPARENCY 2 

Fused Silica Sphere (Radius 2.414 mm) 

N L Freq. (kHz) 
T 0 2 620.57691 
S 0 2 652.04321 
S 1 1 804.52548 
S 0 0 944.70449 
T 0 3 958.90296 
S 0 3 961.98376 

Measurements of D. Isaak, UCLA: 

T02 

615  616  617  618  619  620  621   622  623  624  625 

650 652      653      654 

Frequency (kHz) 

656 
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Fused Silica Sphere (Radius 2.414 mm) 

S11 

wt.^.r'vA'V**«'—» *»T m »».» i>»UW.*»<W^ 

801 802 803 804 805 

soo 

■ 4   •tJ**f+*WVV*d rriHi i_i ii   a f   — * i~"-* ■ IM iW>*"»r 

937 938 939 940 941 942 943 944 

955 957 959    961    963    965 

Frequency (kHz) 

967    969 
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Fused Silica Sphere (Radius 2.414 mm) T02 Mode 

618 619 620 621 622 

Frequency (kHz) 

623 624 625 

Degenerate modes: n = 0, 1 = 2, m = 0, ±1,±2 

m = 0: 
ue=0 

uA = Asin20coscot 

m = ±l: 
ue = A cos0 cos(cot ± (J)) 

u+ = Acos20cos(cot±(|)) 

m = ±2: 
ue = A sin6 cos(cot ± 2(j>) 

u^ =^Asin26cos(cot±2(|)) 
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Fused Silica Sphere (Radius 2.414 mm) T02 Mode 

620.2 

619.7  - 

0.046 

20 40 60 80 

Pressure (bar) 
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1 1 1 
^mPücnroH ^fl   T(XT} _ _ I 'measured 0      ^R 

-measured       ^0       ^R Qo   Q> 

Residual loss: 

1 
— = constant «10 5 

Qo 

Radiation loss: 

1       CVF      T02 
oc 

QR        P       S00, Sll 

•'■measured        *0   '   ^* 

_    ,-VP    T02 
At oc<i 

-P     S00, Sll 
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Fused Silica Sphere (Radius 2.414 mm) SOO Mode 

0.9 

0.8 

0.4 

939 

Obar 

940 941 942 

Frequency (kHz) 

n = 0, 1 = 0, m = 0 

ur = Acoscot 

ue = u4 = 0 

(Pure radial breathing mode) 
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Fused Silica Sphere (Radius 2.414 mm) SOO Mode 
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Fused Silica Sphere (Radius 2.414 mm) SI 1 Mode 

802.2 802.4 802.6 802.8 803.0 803.2 803.4 

Frequency (kHz) 

Degenerate modes: n = 1, 1=1, m = 0, ±1 

m = 0: 
Ur = A cosG coscot 

u0 
= B sin 0 coscot 

U» 
= 0 

= ±1: 
ur = Asin6cos(cot±(|)) 

Ue = BcosGcos(cot±(|)) 

u* = Bcos(cot±((|) + f)) 
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Fused Silica Sphere (Radius 2.414 mm) SI 1 Mode 

0.02 
20 40      60      80 

Pressure (bar) 

100 120 
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THEORY 

WAVE EQ: 
32ui     3Tij 

p at2 ~ axj 

UJ    = z-th component of displacement u 

Ty   = X V u 8y + 
du[     dm 

a ( ^   + T-
1)    = stress tensor 

dxj     dx[ 

SOLUTIONS (Set. e.g.. Lapwood & Usami. 1981): 

I. IRROTATIONAL: 

V2<X> + h2<D = 0 

Ul = V 0 eicot 

h = co/cL = ©Ay (A,+2|Li)/p 

O=jz(hr)Y/m(ö,0) 

II. EQUIVOLUMINAL with ur = 0 :          un = V x r y eicot 

V2\|/ + k2\|/ = 0 k = co/cT= ©Ayji/p 

V=j/(kr)Y&n(ft0) 

III. EQUIVOLUMINAL :    um = (1/k) V x V x r % eicot 

V2% + k2% = 0 ■X=J/*i")Y/w(«0) 

SPHEROIDAL MODES: u = A Uj + B um 

TOROIDAL MODES: u= un 
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TRANSPARENCY  12 

EIGENFREOUENCTES & RADIATION IMPEDANCE 

FREE SURFACE B.C.:        T^ = T0r = T^ = 0 

Determines resonance frequency co0 for unloaded sphere. 

LOADED SURFACE B.C.: 
Gas exerts force F on surface of sphere (r = a), 

_Fj._ 
•'• ^rr  - A ~ ~P 

and 
T0r = T(|)r = °   (neglecting viscosity of gas). 

RADIATION IMPEDANCE: 

p 
vgas 

P 

(evaluated at r=a) 

(evaluated at r=a) 
i co ur 

Outgoing radiation: 
p = poh/(2)(kgr)Y/m(ft0)e^t 

3v 
where kg = co/cg, together with eq. of motion -Vp = p2 —s^ 

gives: 
Z = -ip   c   h/<2)(kga)/h/(2)'(kga) 
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COMPLEX FREQUENCY SHIFT: 

BCatr=a: Tn =-icourZ 

or F(co) = -i co Z,       where F(co) = T^ /ur 

Solution gives complex eigenfrequency co = co0 + Aco. 
Small-loading expansion: 

F(co0) + F' (CO0) ACO = -i co0 Z(co0) 

.*. Aco = -i co0 Z(co0) / F' (CO0) 

All information about surrounding gas is contained in Z(co0). 

Further, since F (co0) is real, 

ReAco/co0=  ImZ(co0)/F'(co0) 
and 

Im Aco/co0 = Re Z(co0) / F' (CO0) 

The Quality factor Q = co0/(2 Im co) can then be obtained from 

1 
Q = 2ReZ(co0)/F (co0) 
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SOO-MODE (I = 0): 

ur = A Jo(cor/cL) cos cot (ue = u^ = 0) 

Tn = X (dur/dr +2 ur/r) + 2 u. dUjVdr ; F(co) = T^ / ur 

Transcendental equation as before:       F(co) = -i co Z 

where Z = - i pg cg h/2)(kg a) / h/2)' (kg a) 

r 1 + i (kg a)-i ] 
Ps c8 L l + (ka a)"2   J 

For reported expts , kg a = 16 for He and 49 for Ar. So 
dependence on molecular mass M of gas and static pressure p of 
gas can be obtained by taking kg a»l limit for Z: 

QocReZ=p^c^ocpM M"1/2 = p M1/2 

Af °c Im Z = pg cg I (kga) = pg cg
2/(coa) °c p MM-1 = pM° 

Theoretical results reported here for 1/Q and Af are obtained using 
full expressions for Z and F (co0). 
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Fused Silica Sphere (Radius 2.414 mm) SOO Mode 

N 
X 

-0.5 

o 
o 
o 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 I- 

A 
Helium (Experiment) 
Nitrogen (Experiment) 
Argon (Experiment) 
Helium (Theory) 
Nitrogen (Theory) 
Argon (Theory) 

10 20 

Pressure (bar) 

30 40 
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SI I-MODE (7 =l.m = 0±n: 

u = A Uj + B uni 

At r=a:    T^ = (aA + ßB) Ylm (0,(|)) 

T0r = (yA + SB) dYlm (0,^ )/30 

T^j. = (yA + 8B) im Ylm (0,(|> )/sin 0 

a = -(X + 2|i)h2j1(ha) - (4jih/a)j1
,(ha) + (4^i/a2)j1(ha) 

ß = (4^i/k)(kj1'(ka)/a-j1(ka)/a2) 

y=2fi(hj1
,(ha)/a-j1(ha)/a2) 

5 = |0,kj1"(ka) (h = co/cL; k = co/cT) 

UNLOADED SPHERE: 

B.C. at r=a:    T^ = Ter = T^ = 0 

/.  (aA + ßB) = 0 and (yA + 5B) = 0. 
Consistency requires determinant = 0.    .*. ad - ßy = 0 gives oo0. 

LOADED SPHERE: 

B.C. at r=a: 1) T^ / ur = -i co Z 

2) T0r = V = 0 
Using ur , Tj-j- and TQT in these equations, get usual form: 

F(co)   = -i co Z 
where 

oc5 - ßy 
F(co)  = 

hj1'(ha)/a-(2y/ka)j1(ka)/a2 

Numerical results for Af and 1/Q shown in figure. 
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Fused Silica Sphere (Radius 2.414 mm) SI 1 Mode 

1.6 

1.4 f- 

1.2 

1.0 

Helium (Experiment) 
Nitrogen (Experiment) 
Argon (Experiment) 
Helium (Theory) 
Nitrogen (Theory) 
Argon (Theory) 

40 60 80 

Pressure (bar) 

100 120 
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TOROTDAL MODES 

ur = 0 =» no coupling to a non-viscous gas. (/. 1/Q = 0 and Af = 0.) 

/. Need to include viscous coupling. 

Consider toroidal modes with m=0: 
ur = ue = 0 =>Tn. = T0r = O 

u^ = jKkr) 3P/ (0)/ae 

T<j,r = ji(k j,/>(kr) - j,(kr)/r) 3P, (6)/36 

UNLOADED SPHERE BC at r=a:       T<j,r = 0     gives co0. 
LOADED SPHERE BC at r=a: 

aVgas d) 
TAr = TV1SC0US= -jig—|—~   where u.g = viscosity coeff. of gas. 

Assuming viscous length 8 « a: 

vgas (|> ~ e "k'r with k' = "^p    and   5"= VPg®/2}ig 
.   Tviscous — it   V' v        x ..   1 - (Ig K   Vgas (|) 

Defining Z = T™00™ / vgas , the BC at r=a has usual form 

F(co) = -i Q) Z 

where F(co) = T^Cu^/u^ = ]x(k j^(ka) - j^kaVaVj^ka), and 

Z = yd+i) 

Note Z oc pi/2 since jig is independent of p. 
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Fused Silica Sphere (Radius 2.414 mm) T02 Mode 

0.0 

-0.1 

£   -0.2 

-0.3 

-0.4 

-0.5 

-*—   Helium 
•*•••   Nitrogen 
•■•••   Argon 

20 40 60 80 100 120 

20 40      60      80 

Pressure (bar) 
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CONCLUSION 

• Our radiation impedance analysis gives results in rather good 
agreement with measured Q values. Our frequency shifts Af 
are much smaller than the measured values, which implies that 
the measured Af are not due to mass loading by the surrounding 
gas.   This is consistent with the data on the T02 mode, where 
there is very little dependence of Af on gas species. However, 
the measured Af for the SI 1 and S00 modes show large 
contributions to Af that depend on gas species, and this is 
perplexing. 

• All effects of gas loading are contained in Z, from which we 
can obtain 

Af/f= ImZ(Q)0)/F'(G)0) 

1/Q = 2 ReZ(co0)/F'(co0) 

where all relevant details of the elastic medium for the unloaded 
case are contained F (co0). 

» The last two relations give the very general result 

Af/f      Im Z(co0) 
1/Q ~ 2 Re Z(co0) 

which can be applied to samples of more general shape, 
provided that the appropriate Z is calculated for such samples. 
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INTRO TRANSPARENCY 

Determining the Radiation Impedance 
for Arbitrarily Shaped Surfaces 

J. D. Maynard and Jason White 
The Pennsylvania State University 

Technology Issue 

Calculate the sound radiation (acoustic impedance) for a vibrating surface. 

Applications 

• Noise control 

• Improving sound radiation from hi-fi speakers, musical instruments, etc. 

• Fluid loading (Resonant Ultrasound Spectroscopy for samples under pres- 
sure) 

Objective 

Develop a  method for calculating the acoustic impedance for a vibrating 
surface with an arbitrary shape. 
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TRANSPARENCY 1 

Acoustic impedance for a vibrating surface 

Physical surface with surface normal velocity v(fs)e~iu't = n ■ v (fs) e~iut 

Wave Eqn. V2P-l/c2d2P/dt2 = 0 -»• Helmholz Eqn. V2P+k2P = 0, Jfc = u/c. 

Boundary value problem: v(fs) determines unique solution P{f) 

Evaluate P (f) at f = fs. Acoustic impedance is Z (fs) = P (fs) /v (rs). 

In  RUS,  Im{P(fs)}  = Im {Z (rs)} v (rs)  gives stress  boundary condition, 
shifts frequencies. 

l/2Re{P(fs)}v(fs) gives dE/dt, the acoustic energy radiated to infinity.  In 
RUS, quality factor Q = uE/ (dE/dt) . 
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TRANSPARENCY 2 

The Green's Function for the Boundary value Problem 

Green's function G(r) satisfies: 

V2G + k2G = -471-5 (r) 

AND     G(fs) = 0 or n ■ VG(rs) = 0 

on the boundary r$. 

Solution:      P «=//,( 
,ikR 

fs) G(f- fs) drs.     NOTE :    G(f-fs)^=-— ! 
R 

The Green's function may be found if the boundary surface corresponds to 
the level surface of a separable coordinate system. 
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TRANSPARENCY 3 

The Heimholz eqn. has    Eleven separable coordinate systems 

Cartesian coordinates x,y,z 

i(kxx+kvy+k,z) 

Cylindrical coordinates p,<j>,z 

Hm (kpP) eim*eik-* 

Spherical coordinates r,8,<f> 

/im(A;r)e,'rn^P,m(C0SO) 
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TRANSPARENCY 4 

Cartesian coordinates x,y,z 

General soln. 

Surface velocity 

Fourier Transform 

Solution P(x,y) 

P(x,y,?) = -jL[ [A (kx, ky) e
iV*e+k.v+k.z)dkxdkv 

1   dP 
« (x, y) = ——— 0 = o) 

ipck dz 

1 

4TT2 
A (kx, ky) I —- 

Kpck, 
ei(k'x+k^dkxdky 

v (kx, ky)= f I v (x, y) e-^+^dxdy 

pcv (kx, ky) I — e^k'x+k^dkxdky 
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TRANSPARENCY 5 

Arbitariiy Shaped Sources    NOT level surface of a sep. coord, sys. 

Must find the Green's function numerically 

Use discrete points 

OR 

Use isoparametric boundary elements 

Green's Thm. 
m = // 

P(f) = P (fs') h-VG(f- fs') - iv (fs') G (f - fs') 

where G (R) = eikR/R with R=\f-fs\. 

Evaluate at f=rs^>-   Surface Helmholz Intergral Equation (SHIE) 

drs' 

P (fs) =   I   I [P(fs')n- VG (rs -fs')- iv (fs') G (fs - fs')] drs' 

Integral eqn for P(r5).  Discretization -> matrix eqn. Invert to find P(fs). 
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Problems with the Surface Helmholz Integral Equation 

• elkR/R is singular when fs' = fs 
• At certain frequencies, there are interior resonances corresponding 

to eigenfunctions which are zero on the surface. 

There is no unique solution to the SHIE; the matrices are singular and cannot 
be inverted! 

There are methods for avoiding the interior resonances; e.g. the Combined 
Helmholz Integral Eqn. Formulation (CHIEF), where the field at selected 
points in the interior are required to be zero. All such methods are messy, 
because they require user intervention to select interior points, etc., and the 
computer codes are long and complicated. 
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TRANSPARENCY 7 

Solution to the Arbitrarily Shaped Surface Problem 

With accessible high-speed computers, there is an Easy Solution 

Index surface points with 'j'. Let Pj — P (fSj). 

Any solution to the Helmholz eqn.  may be expanded as series of eigenfunc- 
tions, e.g. spherical wavefunctions: 

p & = E H At™h< ^r) eim*p™ (cos °) 
I       m 

Let the index v represent (l,m). Let Mju = hi (krj) e^'P™ (cosöj). Then 

Pj = MjvAv 

Invert matrix to find Av = [MJv]"1PJ-. FINISHED! 

Added Benefit! By using eigenfunctions which only radiate outward, the 
problem of interior resonances is entirely avoided! 

Why not before? If not level surface, then many evaluations of hh etc., 
and no FFT's.  Not viable for on-site noise-control engineers. 
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TRANSPARENCY 8 

Determining the change of Q in RUS due to fluid loading 

1        1 dE 
Q     uE dt 

E - nabcYlJ2 [P
LJ2E

I*» + FMJ OfiO» 2 
H      v 

dE      1   f f 

11 = 2] Jp{rs)v^d 

= -J£PiViAi 
i 

i 

~ öpcu}2 Yl J2 MijiPn/jjAi 
»       3 
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TRANSPARENCY 9 

Determining the change of Q in RUS due to fluid loading 

l      11 
Q      u>E2 

pcu2 ^2 Yl Mi^i^jAi 
*       3 

PC 

Pscs EEM» 
«        3 

pscsuA 
IE 

i>i 
pscsuA 

IE 
ijjj '4i 

In RUS: ^ = ^^^(7=-) 

Normalize  au with 
IPSCSUJA 

2E 
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HANDOUT 

Solving Boundary Value Problems with Spherical Wavefunctions 

J. D. Maynard. The Pennsylvania State University 

Assume a time dependence exp (-iut) and a complex sound pressure field P(r) — Re {P (f)} 
+Um{P(f)} satisfying the Helmholz equation with wavevector k = u/c.The complex 
particle velocity field is 

Using separation of variables, we find a complete set of complex linearly independent 
functions which radiate out to infinity (an important boundary condition). With three 
space variables, there must be two independent constants of separation and two mode 
labels. Thus we can write for these basis functions: 

V2$,m (r) + k2$lm (r) = 0 (2) 

Any solution to a radiation problem may be written as a linear combination of these 
functions: 

p(r) = J2HA^^im(r) (3) 
l      m 

Let Aim = aim + ibim and <&/m (f) = Rtm (f) + iSim (f), where the new constants and fields 
are purely real. Now 

P (0 = Yl E HalmRlm (0 - bimSlm (f)) + i (almSlm (f) + blmRlm (f))} (4) 
/      m 

The known boundary condition is the normal component of the particle velocity at a 
surface given by points fs. Note that the known surface velocity is purely real. We let the 
known data by given by the real function defined by 

f{rs) = pcn(rs)-v{rs) (5) 

where n (rs) is the unit normal at the surface point fs. Combining Eqs. 1, 4, and 5, we 
have 

/«> = ££ 
l      m 

aim I -^n (rs) • VS,m (fs) j + btm I -n (fs) • VRlm (fs) 
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~* E E aim (r" fö)' ^'^ fö)) ~ ^ (rÄ fö)" ^*™ fö) 

= E E Kfl'™'Sim fö) + &im-R;m (rs)) - i (almR'lm (fs) - blmS'lm (fs))} (6) 
;     m 

where R'lm (rs) = (1/k) n (fs) • VRim (fs) and S'lm (fs) = (1/fc) n (fs) • VS/m (fs). 

Since / (rs) is purely real, the imaginary part of the left hand side of Eq. 6 must vanish, 
and we have 

E J2 «IrnR'im (?.) = E E 6"»5lm <?•) (7) 
I      m I      m 

Now assume that the normal component of the particle velocity field is known at a finite 
set of discrete points fs with s = 1,2,3. ...N. We simplify notation by writing / (fs) = fs, 
and similarly for other functions of fs. We use the symbol u as an index similar to s. We 
also simplify notation by letting the one integer ß index the two subscripts / and m : \x = 
[I (//), m (ß)]. We truncate to a finite number of basis functions, so that // = 1, 2,3, ...L. 
Let v be an index similar to ß. Finally, we use the convention that an index repeated in 
a term indicates a sum over that index. Now we can rewrite Eqs. 6 and 7 as 

/. = S'Sßaß + R'Sßbß (8) 

R's^ = S'Sßbß (9) 

Now fs is a vector of length N. aß and bß are vectors of length L. and R'Sß and S' are N 
by L matrices. We shall have N > L, so that the matrices are not square. The method of 
Singular Value Decomposition (SVD) allows one to find the inverse of such matrices. Let 
Tvu be the inverse of S'Sß. Multiplying Eq. 9 by Tvu solves for the vector b in terms of the 
vector a : 

bu = TuuR'Ußaß (10) 

Substituting Eq. 10 into Eq. 8 yields 

fs = {Ssß + R'svTvuR'un) aß (11) 

Use SVD a second time to find the inverse of the matrix in parentheses in Eq. 11. Indicating 
this inverse with QßS, we now have 

o-n = Qßsfs   r (12) 

This is equivalent1 to adjusting the coefficients aß to least-squares fit the boundary data 
fs. With Eq. 10 we also have bß. From Eq. 4 we have 
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Re {P (ffl)} = RSßaß - Ss^ (13) 

Im {P {rs)} = SSßaß + RSßbß (14) 

With P (fs) and f (fs) = pen (rs) • v(fs), all other acoustic quantities may be calculated 
using closed-form expressions. 

We shall separate variables in spherical coordinates (r. 6,d) but fs and n (rs) will be given 
in cartesian coordinates (x, y, z). We shall make all lengths non-dimensional by multiplying 
by the wavenumber k = u/c. We simplify notation by letting kx ->■ x. ky —t y, kz -*• 
z, kr —> r, and (l/k) V -> V. We also define ( = cos0. We have 

(15) \Jx2 + y2 + z2 d = tan 1(y/x) c = 

dr      x 
dx      r 

dr      y           dr 
dy      r           dz 

z 
r 

dd         —y dd          x dd     n 

dx      x2 + y2 dy      x2 + y2 

dC,       -xz 
dx        r3 dy 

-yz          <9C 
r3             dz 

x~ + y* 
r3 

With h (r) = (nx, ny, nz), we make the following definitions: 

We now have 

(16) 

.    . . dr dr dr , ^ 
hr(x,y,z) = nx— + ny— + n2 — (17) 

,    . , dd dd dd ,    v h4,{x,y,z) = nx— + ny— + nz — (18) 

£}/" ftf fi/~ 
hi(x,y,z) = nx—+nv— + nz— (19) 

Separating variables in spherical coordinates yields the spherical wave functions: 

$im (r. d. d) = (Ji (r) -I- iyi (r)) (cos md + i sinm<f>) Yim (cos 6) (21) 
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where 

The j/ and yi are the spherical Bessel functions, and the P™ are the associated Legendre 
polynomials. The Yim are similar to the spherical harmonics, but with the 0 dependence 
removed; the <f> dependence is included explicitly in Eq. 21. 

Note that -I < m < I. Eq. 22 is for m > 0 only; for m < 0. we use the Condon and 
Shortley phase: Y^m (C) = (-l)m Ylm (0 . 

We truncate the number of basis functions by letting Lmax be the highest order for the 
spherical Bessel functions. The the total number of basis functions is 

L= £(2/+l) = (Lmax + l)2 (23) 
i=o 

The real and imaginary parts of <&im are 

Rim (r. <f>, C) = (Ji (r) cos m<£ _ Vi (r)sin m<t>) Yim (C) (24) 

Sim (r, (p, C) = (ji (r) sin m(j> + yi (r) cos meß) Ylm (0 (25) 

We now have 

dRim 
dr 

dRim 

= (j{ (r) cos mcj) - y[ (r) sin m.6) Ylm (C) (26) 

= -m (ji (r) sin mcj) + yt (r) cos mcj)) Ylm (C) (27) 
d<j> 

= (ji (r) cos m^ - yi (r) sin m<£) Y(m (C) (28) 
dRim 

r>i     (     x   r\        u   ÖRlrn    .   ,     dRim dRim ,onN Rim(^^0 = hr-o^r + h<t>-^- + h(:-^- (29) 

and similar expressions for Sim and S',. Im- 

It should be noted that h^ is singular when x = y = 0. Also, 5^'±i (C) is singular when 
£ = ±1 (i.e. when x = y = 0 ). When these singularities occur, Y/m is zero and h^ is 
zero. The zeros dominate except when m = ±1. After some algebra, we find that when 
x = y = Q(£ = ±l and (f> is undefined) and m = ±1, then 
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R'lm (r, 0 = -\ Ui (r) nx - Vl (r) mny) (y/T^pY^ (C)) 

= -~ Ui (r) n* - y, (r) mny) (y/ (/ + 1) C*) (30) 

S[m (r, 0 = 4 Hi (r) mn, + w (r) nx) ( v^C^m (C)) 

= -- Ui (r) mny + y, (r) nx) (yZ (/ + 1) C*) (31) 

The spherical Bessel functions and the associated Legendre functions may be calculated by- 
computer using the upward and downward recursion relations as in Ref. 1. The derivatives 
of the functions may also be found by computer using the following relations: 

Ji(r)=ji-i(r)-{l + l)ji(r)/r 

and when £ ^ ±1 and 0 < m < /, 

Yl'm (0 = YZp «' + m) Yl-^ (0 - ICXim (0) 

Note that if | ra |> /, then Yim(0 = 0. In a computer program which calculates the 
associated Legendre functions care must be taken when £ = ±1. In particular, the limiting 
value indicated in Eqs. 30 and 31 should be used rather than the singularity. 

1. W. H. Press, S. A. Teukolsky. W. T. Vettering, and B. P. Flannery, Numerical Recipes 
(Cambridge University Press, Cambridge, 1992). 
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ABSTRACT: 

The resonant sphere technique, RST, was applied to measure 

elastic moduli of spinel single crystal sphere with 3.6675 mm in 

diameter. Resonance frequency of 23 modes were measured  between 

293 and 1200 K. As similar to previous measurement for a 

rectangular prism specimen (Suzuki and Anderson, 1982), resonance 

frequencies of all modes decrease with temperature, and some of 

them show discontinuous change of slopes near 904 K, whereas some 

other modes do not show the change clearly. 

Inversion of the frequency data provide us a set of 

independent elastic moduli of Ks , Cs and C44 (or another set of 

cii' C12 and c44) as a unction of temperature.  The standard 

error of observed frequency after iterative calculation is a 

=0.16kHz (ca. 0.012%). Therefore, estimated probable errors of 

these moduli are very small as compared with those in previous 

measurements with RST. 

Elastic moduli of the spinel specimen with density ,0=3.5846 

g/cm3 at 293K (20 °C) and their probable errors are: 

Cn = 281.31 ±0.01 

C12 =  155.43     ±0.01 

C44 =   154.588  ±0.007 

and    C0    ■    62.936 ±0.003    in GPa.      The anisotropy factor is 

A=C44/Cg=2.4561, which is much larger than that of MgO (A=1.55) and 

CaO  (A=0.98). Isotropie properties are 

Ks=197.39 ±0.01  , 

and    fx =107.81    (Hill average). 
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Combining with thermal expansion data, we can evaluate 

anharmonic parameters. For example: 

Gruneisen parameter  Anderson-Gruneisen parameter 

rm ds =     5T = 

at 300K    1.16 2.98       4.72 

1,200K    1.17 4.46        6.37 

One of shear moduli, C44, do not have clear discontinuity in 

the slope against temperature, whereas another shear modulus 
cs( = (cn-ci2)/2) has distinctive bend at 904 K, and bulk modulus 

Ks (s=(cn+2C12)/3) has intermediate between those, because of 

opposite change of slopes in Cn and C12 above 904 K. 

Deviation at 904 K from assumed linear tendency is about 2 % for 

Cg and less for the other moduli. The abrupt change of the 

Gruneisen parameter at 904K is Ay= 0.1, mostly due to lambda 

transition in thermal expansion coefficient. 

Preliminary MD calculation shows that the second order 

transition may be caused by the site preference of magnesium ions 

to octahedral sites at high temperature. 

KEY WORDS: 

resonant sphere technique, RST, anisotropy, elasticity, 

spinel, thermal expansion 
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Introduction 
Elasticity and its pressure and temperature dependency of 

minerals is greatly important in study for constituents and their 

state in the Earth interior. For the measurement of elasticity, 

we take notice of a resonance method adopting a sphere shape for 

specimens, no matter which they are isotropic or anisotropic. 

This method may be called the resonant sphere technique, or RST 

and is advanced in these years for anisotropic materials. The 

sphere shape of specimens in the resonance method brings many 

advantages in measurement of elasticity and anelasticity (Suzuki 

et al., 1991, 1992). 

In the Earth's mantle, one of major constituents of 

orthosilicate, olivine, changes its structure having high density, 

as demonstrated by many high pressure experiments. The phase is 

called as the gamma-phase and has been greatly taken notice 

of(e.g., Suzuki et al., 1979-a). Its crystal structure is the 

same as spinel MgAl204. The gamma-phase is not stable at ambient 

pressure, and much attention has been focused on spinel, MgAl204 

as its analogue 

Spinel MgAl204 is also one of important minerals for practical 

uses, and many physical properties have been measured. A clear 

inflection point is found at 933 K in the linear expansion curve 

of spinel (Suzuki and Kumazawa, 1982), and such inflection was 

also found in electrical conductivity near the temperature (Weeks 

and Sonder, 1980). Crystal structure was studied extensively 

(e.g., Yamanaka and Takeuchi, 1982) and they suggested an order- 

disorder phase change due to preferred site occupation of cations. 

Temperature change of elasticity was once measured for the 

rectangular prism specimen, and the similar change was confirmed 

in elasticity change (Suzuki and Anderson, 1982), though some 

systematic deviation of frequency had brought in some ambiguity. 

In the present measurements, we used a synthetic specimen of 
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spinel shaped into an accurate sphere.  Frequency changes of" it 

were traced up to 1,167 K well above the transition temperature. 

Data Reduction 
In order to deduce elastic moduli CVj from resonant 

frequencies, it is necessary to compute accurately enough the 

eigenfrequencies of the specimen, since the deduction is made by 

comparing the measured resonant frequencies with reference 

eigenfrequencies given by the elastic moduli assumed on the 

specimen. Theoretical evaluation of eigenfrequencies for 

anisotropic materials is described elsewhere (Michizuki, 1988; 

Isoda et al-, 1990) 

In order to obtain elastic moduli from n's observed resonance 

frequencies, the residual equations are defined as: 

\d cij) 

(k  - 1,2,3... n) 

where Afk  = fk- fk°  is difference of observed frequency fk  and 

computed reference frequency fk°    for the k -  th mode, ^c±j ~ c±j 

- C.°  is difference of specimen's elastic moduli Cy  and assumed 

values of reference elastic moduli C^0  (e.g., Chang and Barsch, 

1973), S   is residual of the k  - th mode.  Summation is made for 

possible numbers of i and j  satisfying a relation i ^j .  The fk° 

and d fk / d Cxj   are computed by using the reference elastic moduli 

Ci-°  , dimension and mass of the specimen.  The Ac±j  are the 

unknowns to be determined by minimizing the squared sum of 

residuals, I #k
2.    The elastic moduli of the specimen are finally 

obtained by C±j  = AC±j + C±j°. 
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Experimental 

Apparatus and specimen 

The block diagram of the RST measurement system is shown in 

Figure 1.  This system is basically not different from those shown 

in Fig.4 in Ohno (1976) or Figs. 1 and 2 in Sumino et al.(1976), 

when continuous wave (CW) method is applied for data acquisition. 

Recently further developments were made to realize the FT-method 

(Inouye, 1993; Fujio, 1995) and high pressure measurement (Ohno et 

al., 1993). 

A synthetic boule of spinel was cut and shaped into a sphere 

with the so-called two-pipe method (Fräser and LeCraw, 1964). 

For accurate determination of elasticity, we try to make the 

relative error of diameter less than a few micro-meters. 

Measurements 

Resonance frequency under no external forces was obtained by 

measurements changing applied force to zero (Table 1).  At higher 

temperature, frequency was measured under constant supporting 

force, of which effect was corrected with the frequency of zero- 

force at room temperature. 

Temperature was measured with chromel-alumel thermocouples set 

very near to the specimen.  Measurements of frequency were made 

for 23 modes between room temperature 293 K and 1173 K (Figure 2). 

Temperature intervals were about 30 K around the transition 

temperature and some tens Kelvin otherwise. Reproducibility was 

confirmed by measurements at several temperatures of the cooling 

run made at the close temperatures of the heating run. They do not 

show much difference from the heating run.  Hysteresis is quite 

small, if possible. 

Figure 3-a and -b compare the temperature dependency of 

frequency near the temperature of 904 K.  Some of modes change 

clearly their slopes in both sides of the transition temperature. 
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Results 

Elasticity 

Elasticity of the spinel specimen is obtained by the least 

squares calculation mentioned above and listed in Table 2. 

Aggregate isotropic properties are obtained by the Voigt-Reuss- 

Hill averaging scheme (Kumazawa, 1964) and also listed.  The 

iterative calculation was made, and this could reduced the 

standard error very much as shown in Table 2. 

Temperature dependency of elastic moduli are shown in Figures 

4 and 5.  In the cubic symmetry, three of elastic moduli are 

independent.  Least squares calculations using the modes with 

clear change of slopes and without those show that results are 

very close each other within errors, and this confirms the 

consistency of observed frequency data. 

Anisotropy factor 

Anisotropy factor of cubic symmetry is defined by the ratio of 

two shear moduli as 

A= C4i/Cs 

where Cs is a shear modulus defined by Cs=(C11-C12)/2. The A    of 

spinel is about 2.5. For isotropic materiels, A  is unity, and MgO 

and CaO have 1.11 and 1.22 respectively.  Elastic properties of 

spinel is said to be quite anisotropic. Also, the A    shows clear 

inflection at 904 K as shown in Figure 6. 

Thermal expansion 

Thermal expansion data of spinel is reproduced in Figure 7. 

Smoothed values of expansion coefficients are obtained applying 

the Gruneisen's theory of thermal expansion (Suzuki et al., 1979- 

b). Expansion coefficients just below the transition are 

expressed by a quadratic equation as shown in Figure 7.  Inflec- 

tion temperatures from thermal expansion measurement and frequency 

measurement are a little different, probably due to differences in 
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measurement system and specimen.  In the calculation using 

thermal expansion data, this small discrepancy is adjusted by 

assignment of a (rr)=28.6XlO
-6/K and a (T0)=25.6X 10_6/K, where T 

is the transition temperature, T0 = 800 K, and a function a (T- 

T0)
2+b (T-T0) + aQ  is assumed between T0 and Tr.    The Grüneisen para- 

meter is evaluated combining bulk modulus, thermal expansion and 

heat content data (Robie et al., 1978), and shown in Figure 8. 

Discussion 

In the present measurements, we can obtain accurate values of 

elastic moduli of spinel, and also we can trace temperature 

dependency of them precisely.  Much of these are due to the 

sphere shape of the specimen. The xyz algorithm (Visscher at al., 

1991) is useful for iterative calculation, when combined with the 

variational method for evaluation of df /dCxj  (Oda et al. 1993). 

This reduced the standard error very much as shown in Table 2. 

This magnitude of error is much smaller than those in previous 

reports by the resonance methods. 

Two shear moduli of spinel, C44 and Cg are quite different in 

magnitude as shown in Figure 5 (b) and (d) and in Figure 6, and 

this causes large elastic anisotropy as compared with other cubic 

crystal, such as MgO and CaO. The Cg is less than a half of C44, 

which means the structure is very compliant to shear stress 

parallel to [110] direction and this may be also the reason of 

large temperature effect on Cg and the phase transition. 

Preliminary calculation with the MD method shows that 

magnesium ion in tetrahedral sites is easy to move to octahedral 

sites at high temperature (personal communication, Matsui 1997). 

This may be the reason of the transition at about 900 K. 

Both of observed thermal expansion coefficient a    and 

isothermal bulk modulus have discontinuities at the transition 

260 



POSTER 9 

temperature under ambient pressure. The boundary of the low and 

high temperature phases can be estimated: difference of 

isothermal bulk modulus at the transition temperature is 1 GPa or 

smaller, the boundary is about 100 GPa or higher at room 

temperature. 

Acknowledgement: The authors are grateful to Dr. H. Oda and Mr. 
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Table 1. Observed frequency of the spinel specimen 

with diameter 3.6675mm. 

no. mode f°/kHz 

1 Eg -1 977.25 

2 T2u-1 1003.16 

3 Eu -1 1390.13 

4 Tlu-1 1414.93 

5 A2g-1 1432.84 

6 T2g-1 1465.34 

7 T2g-2 1748.48 

8 Tlg-1 1834.20 

9 Tlu-2 1919.90 

10 Eg -2 1933.64 

11 T2u-2 1987.20 * 

12 T2u-3 2096.48 

13 Alg-1 2107.10 

14 A2u-1 2202.08 

15 Tlg-2 2238.40 

16 Eu -2 2280.10 = 

17 Alg-2 2280.10 = 

18 Tlu-3 2400.88 

19 Eg -3 2435.85 

20 T2g-3 2507.80 

21 T2u-4 2546.30 

22 Tlg-3 2608.55 

23 T2g-4 2652.35 

24 Eg -4 2691.70 

25 Alu-1 2708.00 

*: not . observed at high temperatures 

=: cannot be < distinguished 
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Table 2. Elasticity of single crystal spinel MgAl204 

with density p =3584.6 Mg/m3, 

and its aggregate properties, at 293K. 

Single crystal elastic properties in GPa 

Ks     197.395  ± 0.013 

cs 62.936 ± 0.003 

C44 154.587 ± 0.007 

Cn 281.310 ± 0.014 

C12 155.437 ± 0.013 

standard deviation in the least squares 

calculation  <r=0.16/kHz 

Isotropie properties of the Hill average 

bulk modulus     Kg=197.39 GPa 

rigidity modulus u=107.806 GPa 

Young's modulus  E =273.61 GPa 

Poisson's ratio  v=0.26898 

elastic wave velocity  V =9.755 km/s 

Vg =5.484 km/s 
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1. Introduction 

In order to extend pressure range for application of the resonant 

sphere technique (RST), the cavity resonance method has been 

developed by Ohno et al. (1993). In this method, a spherical specimen 

is placed in the center of a spherical container which is filled by high 

pressure gas, and resonant frequencies of the spherical specimen are 

measured under the confining pressure. Since the elastic constants are 

determined by minimizing, in a least squares sense, the differences 

between measured and computed resonant frequencies of the specimen, 

the free vibration frequencies have to be computed for three layered 

sphere which is composed of the inner spherical specimen, high 

pressure gas layer and outer solid layer. However the free vibration of 

a radially heterogeneous sphere having a gas layer has not been known 

in detail so far.   In the present study, we investigate how the resonance 

spectrum of the inner spherical specimen is affected by the gas layer, 

solving a problem of free vibration of the three layered sphere. 

The spherical shell structure composed of three layers is shown in 

Figure 1. The outer layer is a solid container of tungsten carbide, WC, 

and helium gas, He, fills the middle layer as pressure medium to 

compress an inner spherical sample. This model is called "cavity 

model". The problem of free vibration was solved for two cavity 

models, where the inner spherical specimen is elastically isotropic 

(model A) and anisotropic (model B). The elastic constants, density and 

radius of both models are given in Table 1. The computer program 

coded by Saito (1988) was used for computing the frequencies and 

eigenfunctions of normal modes of the three layered sphere with 

isotropic elasticity. 
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2. Free Vibration for cavity model with an isotropic specimen 

Resonance modes for model A are described by torsional nTj and 

spheroidal nSj modes, where n and 1 are the radial and angular order 

numbers, respectively. These normal modes are characterized on the 

basis of the distribution of strain energy excited in the three layered 

sphere. The strain energy of torsional modes is confined only in the 

inner sample or the outer solid layer because of no excitation of the 

torsional displacements in the gas layer. However the energy of 

spheroidal modes is generally excited over the entire space of the three 

layered sphere. Figure 2 depicts the strain energy distribution of 

spheroidal modes. The strain energy is localized in the inner sample, 

gas or outer layer because of a large difference in acoustic impedance 

between the gas and solid layers. We call such a mode "sample", "gas" 

or "container" mode, whose nomenclature derives from the layer where 

the strain energy is localized. In these modes, the frequencies of sample 

modes provide information regarding the elastic constants of the inner 

spherical specimen. 

The resonant frequencies of the three layered sphere were computed 

as a function of pressure in gas layer. The changes in elastic constants 

and density due to pressure and the volume change of the sample and 

container were taken into account for the computation of resonant 

frequency. The pressure derivatives of elastic constants are listed in 

Table 1. In Figure 3, the pressure dependence of the computed 

frequencies of the nS2 modes for model A is shown for the sample, gas 

and container modes. The number of gas modes is largest in the three 

kinds of resonance modes. The gas mode shows the largest slop in the 

pressure change of resonant frequency, and its pressure curve often 

intersects those of sample and container modes. For a careful 
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examination of the intersections of the pressure curves, a small 

rectangular part in Figure 3, where the pressure curves of sample and 

gas modes appear to cross at the pressure of 22.3 MPa, is enlarged in 

Figure 4. The curve of 10S2 mode approaches that of 11S2 mode as the 

confining pressure increases up to the intersection pressure, and both 

modes gradually separate with further increase in pressure. Figure 5 

depicts the change of strain energy distribution of the 10S2 and nS2 

modes. As the pressure increases, the 10S2 changes from gas mode to 

sample mode and the 11S2 changes from sample mode to gas mode. 

When our attention is focused on the sample or gas mode, the 

intersection is regarded as an interchange from 11S2 to 10S2 for the 

sample mode and from 10S2 to nS2 for the gas mode. Such an 

interchange occurs only between the spheroidal modes of nSj and ^Sy 

satisfying the conditions of 1=1' and n-n'=±l. 
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3. Free Vibration for cavity model with an anisotropic specimen 

In the case of model B in which the inner spherical specimen is 

dastically anisotropic, the free osculation of three layered sphere can be 

computed by the Rayleigh-Ritz (variational) method, where the normal 

mode displacements of spherical shell structure with an isotropic 

specimen are used as the basis functions. Figure 6 shows the frequency 

spectrum computed for the cavity model with a spherical peridase 

specimen. The resonance modes, as well as those for model A, are 

classified into sample, gas and container modes on the basis of the strain 

energy distribution. It is found that most of resonance modes are gas 

modes. For a comparison, the frequency spectrum computed for the 

cavity model with an isotropic specimen is also shown in Figure 6. The 

elastic constants of the isotropic specimen were obtained by the Voigt 

averaging scheme of the elastic constants of the peridase. A larger 

number of sample modes are identified in a given frequency interval, in 

comparison with free vibration for the cavity model with the isotropic 

specimen. This increase in sample modes is attributed to split of 

degenerate modes due to the elastic anisotropy of the inner specimen. 

The pressure dependence of resonant frequencies for modd B is shown 

for mode groups peculiar to the cubic crystal symmetry to which the 

pridase specimen belongs (see Figure 7). The interchange between the 

gas mode and sample or container modes occurs only in the resonance 

modes bdonging to the same mode group. The resonant frequencies of 

sample and container modes increase only by about 1kHz as the 

confining pressure increases up to 60MPa, while the increase in 

frequency of gas mode is about 200kHz for the same pressure increase. 

The large frequency increase of gas mode may be attributed to larger 
change rate in bulk modulus of gas layer. 
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Figure 6.   Resonance spectrum (bottom figure) for model B, where a periclase specimen is used as the inner 

spherical specimen of three layered model. For a comparison, frequency spectrum computed for the cavity 

model with an isotropic specimen is shown in the top figure. The elastic constants of die isotropic specimen 

were obtained by the Voigt averaging scheme of the elastic constants of the periclase. The long, middle and 

short bars represent the resonant frequencies of sample, gas and container modes, respectively. A larger 

number of sample modes are found in a given frequency interval, in comparison with the free oscillation for 

the cavity model with the isotropic specimen. This increase in the number of sample modes is attributed to 

split of degenerate modes due to the elastic anisotropy of the inner sample. 
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4. Discussion 

As seen in Figures 3,4 and 7, the intersection between the pressure 

curves makes the mode identification difficult because there are two or 

more resonance modes in the vicinity of the intersection. In order to 

avoid such a trouble in the mode identification, it is necessary to make a 

vibration system that the number of gas modes is as small as possible in 

a given frequency interval because the intersection occurs between gas 

mode and sample or container mode. Figure 8 shows the effect of 

thickness of gas layer on the number of gas modes. The frequency 

difference between adjacent gas modes is larger as the thickness of gas 

layer is thinner. This result implies that the possibility of intersections 

between gas and sample modes may be lower for the model of three 

layered sphere with thinner gas layer. 

The resonant frequencies were measured for a spherical periclase 

specimen by the cavity resonance method. The measured frequencies 

are compared with the computed frequencies in Figure 9. Agreement 

between measured and computed frequencies are good. This result 

indicates the justification of our computation for free vibration of an 

elastically anisotropic sphere under high pressure. Therefore the RST is 

applicable to elasticity measurements of anisotropic materials under 

high pressure. 
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5. Conclusion 

In order to make it possible to employ the RST for the elasticity 

measurements under high pressure, we computed free vibration for 

cavity models of spherical shell structure composed of three layers of 

solid sample, gas and solid container. The results obtained are 

summarized as follows. 

l)It is possible to compute the free vibration of the three layered 

sphere. A good agreement is obtained between computed and 

measured resonant frequencies. 

?.)The resonance modes for the cavity model are divided into sample, 

gas and container modes, whose strain energy distributions are localized 

into sample, gas and container layers, respectively. 

3)Interchange takes place between adjacent resonance modes belonging 

to the same mode group, and it makes the mode identification difficult. 

4)To avoid such an interchange between resonance modes, it may be a 

better way to make the thickness of gas layer as thin as possible. 
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Figure 1.   Model of spherical shell structure that is composed of sample, 

gas and container layers. Radii of sample, gas and container layers are 

denoted by ri, rj and r^, respectively. The elastic constants and density of 

each layer are given in Table 1. We consider two cases where the inner 

spherical sample is elastically isotropic (model A) and anisotropic (model B. 

In model B, the inner specimen is a single-crystal periclase. 
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Tabel 1.   Paramater values of model B 

Density (g/cm3)    Radius (mm) Elastic Constants (GPa) 

K Cu C12 C44 

Sample MgO 3.589 2.057 162.83 133.69 
Gas He 2.5E-04 3.057 2.4E-04 - 
Container WC 15.1 7.057 391.00 219.00 

Sample MgO 
Gas He 
Container WC 

296.15 95.35       155.89 

dKJdP     d\i/dP      dCn/BP   öCn/3P   dCn/flP 

4.22 2.08 8.98 2.84 2.09 
(a=0.99239+5.4467P-24.270P2+80.028 P3) 
6.0 2.5 - - 

a: Sound velocity in km/s. 
The elastic constants of MgO, K and u, were obtained by the Voigt averaging scheme of Cy. 

Table 1.   Paramater values of model A 

Density (g/cm3) Radius (mm) Elastic Constants (GPa) 

K V- Cu           C12         C44 

Sample 
Gas 
Container 

Steel      7.789 
Hs         2.5E-04 
WC       15.1 

2.384 
5.0 
8.5 

165.0 
2.4E-04 
391.0 

79.5 

219.0 
- 

dYJdP aji/ap acn/sp dcnidp aCii/öT 

Sample Steel 
Gas He 
Container        WC 

5.0 1.9 
(O=0.99239+5.4467P-24.270P2+80.028 P3) 

6.0 2.5 

a: Sound velocity in km/s. 

283 



POSTER  11 

j  sample    |        gas      |      container      | 

1 _ i       ii       i       i       i       i       i       i 

■    Container mode       /1       A 

" 
Figure 2.   Distribution of strain 

• 
energy excited  in  the   three 

/                    / 
layered     sphere     with     an 

0 

>-     1 
O 
01 
U 

*           »V             *     \ 
isotropic specimen (model A). 

1-         i                          The strain energy distributions 
1           1           i           1 

11    11 

1 

i      1      ' 
,,     I      < 

1      'T 1 1  

i                                         ~ 

;   Gas mode 
for rigidity and bulk moduli are 

represented by the solid and 
z II    , , 

'I    1  1 

i '.    i '    ' 1 ,    ' '    ' 
' '    ' i   ' ,'i 

dashed lines, respectively.   The 
Z 
< 

' >    (1 

"   1 t 
''    1   t 
1 •   1   1 
1 >   1  > 

1       '     |       ' 

i ; I ; 
ii strain energy is localized in the 

Q_ 
1— > 1   ,   1 

it, i 

\ i * i 

I * ' * 
, t ■ i 

1    ! ■ inner sample, gas or outer layer 
u 
> 

• t i t 

i ■ ,  i i 

■ • i 11 
* • t  • i 

i * , * 
i • , ( 

! • ' * 
t • '' Üi because of a large difference in 

< it,    ,, 

■ I I! ! j, acoustic   impedance   between 
Lü 
or 

0 

1 

1 *,    II    \i    '• 

if  r i? if 
'.'' the gas and solid layers. Such a 

—1 1         I         1        1        !        !        f        1 mode is called "sample", "gas" 
1         i         1         1        1        1        1        1   "■   |-  

or   "container"   mode,   whose 
Sample mode nomenclature derives from the 

layer where the strain energy 

■ is localized.    In these modes, 
• the    frequencies    of   sample 

. modes    provide    information 

■ 

/     / • regarding the elastic constants 

0- A/-'''' of the inner sample. 

i  i  i II,,,, 

0                              ö 

a/mm 

284 



POSTER  12 

N 
X 

0.00     0.02     0.04     0.06     0.08     0,10 
P/GPa 

Figure 3.   Pressure dependence of resonant frequencies of sample (solid 

line), gas (dashed line) and container (dotted and dashed line) modes, which 

are equivalent to the nS2 modes of model A. The number of gas modes is 

largest in the three kinds of resonance modes. The gas mode shows the 

largest change in the pressure dependence of the resonant frequencies and 

its pressure curve often intersects those of sample and container modes. A 

small rectangular area is enlarged in Figure 4. 
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Figure 4.   Pressure dependence of the frequencies of 10S2 (solid circles) and 

llS2 (open circles) modes in the pressure interval from 20 to 25 MPa. The 

pressure curve of 10S2 mode approaches that of nS2 mode as the confining 

pressure increases up to about 22.3 MPa, and then both curves gradually 

separate with further increase in pressure. When our attention is focused 

on the sample or gas mode, the intersection seen in the small rectangular 

area of Figure 3 is regarded as an interchange from US2 to i0S2 for the 

sample mode and from 10S2 to nS2 for the gas mode. Such an interchange 

occurs only between the spheroidal modes of nSj and n>Sj> satisfying the 

conditions of hi' and n-n'=±l, where n and n' are the radial order numbers 

of the spheroidal oscillation, and 1 and V are the angular order numbers. 
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against confining pressure. The resonant frequencies of both modes are 

nearly equal at about 22.3 MPa. As the pressure increases, the 10S2 changes 

from gas mode to sample mode and the nS2 changes from sample mode to 

gas mode. 
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Figure 8   The effect of the gas layer's thickness on the frequency of gas 

mode. Pressure dependence of the frequency is shown for different 

thickness of the gas layer, dgas. The left, middle and right panels 

correspond to the cases of dgas=2.85, -1.0 and -O.lrnm, respectively. As the 

thickness of gas layer is thinner, the frequency difference between adjacent 

gas modes is larger and the number of gas modes decreases in a given 

frequency interval. This result implies that the possibility of intersections 

between gas and sample modes may be lower for a model of three layered 
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Figure 9   Comparison of calculated frequencies with resonant frequencies 

measured for a spherical periclase specimen. The thick, thin, and dashed 

lines represent the pressure dependence of the resonant frequencies of 

sample, container and gas modes, respectively. The measured frequencies 

of Eu-1 and Eg-1 modes are shown by drcles. The relative difference 

between both frequencies is about 0.4%. Frequency increase of the sample 

mode due to pressure changing from 0 to 60 MPa is about 1 kHz, while the 

increase in frequency of gas mode is about 200kHz for the same pressure 

increase. If the frequency increases are measured for a number of 

resonance modes, the pressure derivatives of the specimen's elastic 

constants are estimated. 
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Acoustical resonator frequency shift due to the 
migration of suspended particles 
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Particle Migration: 

Pressure 
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Microsphere CCD Photographs: 
Glass: 

• •    • 

!*••••• t ■ 

\   • ♦ • 
3    » 

I    ' 
• #    % 

.  t 

• • 

•    • 

-''S.': i-iXs 
•« 

«f 

I3?f.<* Ä^Ä^* 

•f.A *■■ :•*■ 

:&? 

JO ^--^|^|-t|| n^tMMiJ ■ til-    ' ^__ 

:;:...  ■■•.■'■*s.-.TpS!V 

0.l5'r>'r) 

Plastic: 

294 



TRANSPARENCY.4 

Pump 

\ 

Probe beam 

Layers of microspheres 

Reflected beam 

Collinear Four-Wave Mixing: 

• At the Bragg condition layered particles scatter 
sound with the same phase [modulo (2rc)]. 

• Equilibrium volume fractions as small as 0.0005 can 
cause appreciable reflectivities (or frequency shifts) 
once the particles migrate to nodes or antinodes. 

• At the Bragg condition both the pump and probe 
waves are in the "stop band" of the spatially periodic 
medium caused by the particle migration. 
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Number density: 

3 32 

^np(z,t)=Da?np(z,t) 

/ 

2ka2EF 3 
3|i    3z 

Diffusion 

(np(z,t) sin(2kz)) 

\ 

Radiation Pressure 

Steady state solution: 

, .    k n0 exp[-q cos(2kz)l 
np(z) = —a L--—  p 7Cl0(q) 

Vpß0pSf,   ß^     Acoustic Ene^y 
q = ^ 

8k*T B kBT 

a Particle Radius ßo Solvent Compressibility 

k Pump Wavenumber ßP 
Particle Compressibility 

nD(z,t) # Particles/Volume U Solvent Viscosity 

no Mean # of Particles/Area kB Boltzmann's Constant 

T Temperature Po Pump Pressure Amplitude 

Vo Particle Volume D Particle Difrusivity 

E Standing Wave Energy 

Density 

F Compressibility Factor 
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Number Density: 
7 ->—*■—^—^^—^ 

q=4 

Refractive Index: 

0.999 
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Reflection coefficient for N layers: 

Born approximation -> Incident wave is not depleted 

sin[Nkd] 
RN

 " Rl   sin[k d] 

0.76 0.78 0.8 0.82 

pr$b£L-     Frequency   (MHz) 
0.84 

-80 layers 
glass microspheres 

pump fr<E^«encjj * 200 Wl 
I 
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Experimental Setup 
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Received Probe Wave Signals: 
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Normalization of the Received Probe Wave: 
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Frequency Shift Experimental Setup 
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Gated pump amplitude frequency shift: 
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Ramped pump amplitude frequency shift: 
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Shift in Frequency from Excluded Volume 

Maximum Kinetic Energy 
Maximum Potential Energy 

= 1 

k2 = JlV(()|2dv/Jl(t)|2dV r (~) 

Rigid particle 
of volume Vp 

Chamber volume = V ch 

p = p coskz coscot 

M = ^E.cos(2kz) 
w       vch 

Scattering correction: T. Wang et al. JASA (1982). 
Adiabatic invariance/radiation pressure: Putterman (1989). 
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Frequency Shift: 
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1 
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l\ 

Adiabatic invariance: \\ ■I 

Change in 

E             9 

dE = ^-dü) 

frequency for a single particle: 

I 
G \ 

CO, 
(CO0-CD1) = ^[U(Z0)-U(Z1)] 

^0 

Potential energy felt by particle: Gor'kOV ( 11 6>2 ) 
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J 

Change in frequency for a distribution of particles: 

Av       lVp(     %\L?     , x     (^AA  = E.M__JL n(z)C0S  27E— dz 

Eo System energy v* Resonator volume 
vP Particle volume ©0 Unperturbed frequency 
L Grating spacing 
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Maximum frequency shift: 

np(z)=*X8(z-Zn) 

Avmax=~ 
V    Hoy ßo 

XpV0 
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(^(z) a A exp(ik1z) + 3 expf-ikjZ) 

r^r^r^r^ 
B rv/\rv/~v, 

ni 

<j>2(z) = C exp(ik2z) + D exp(-ik2z) 

n2 

Continuity of pressure and velocity at boundary: 

-icop1(|)1(0) = -icop2(|)2(0) 
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Transfer matrix approach for frequency shift: 

Refractive index 

n< 

rii ric 

L, 

t(co) = p3-d23-p2-d12-p1 

Pressure release boundaries 

(1   l)t(fl))[n 
1 V  V 

= tn(co)-t12(co) + t21(co)-t22(co) 

= 0 

Rigid boundaries 

(1   -l)t(©)/T| 
= t!! (CD) + t12 (CO) - t21 (03) -122 (CO) 

= 0 
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Conclusions on Frequency Shifts: 

• Even for volume fractions as small as 0.001, 
radiation pressure induced particle migration 
introduces frequency shifts Af as large as 200 ppm. 

• Adiabatic invariance model based on Gorkov 
radiation potential well yields the general magnitude 
of the final Af. 

The approach to equilibrium Af following pump wave 

turn-on has been modeled with moderate success. 

Frequency shift of a simulated resonator-layer 
system computed exactly from the transfer matrix 
agrees will with adiabatic invariance model for low 
simulated volume fractions. 
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Resonances and other mechanisms for elastic 
contributions to the scattering of sound by objects in water 

Philip L Marston 
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Outline 

1. Experiments on resonances of a large spherical 
shell in Lake Union. 

2. Normal mode description of resonances: 
Resonance Scattering Theory and fluid loading 
effects for perfectly elastic spheres. 

3. Ray descriptions of resonances 
• Leaky or supersonic waves 
• Subsonic waves 
• Anomalies for shells 

4. Scattering amplitude for high Q resonances of 
spheres 

shapes 
5. Noncanonical 4HB: High frequency meridional 

ray backscattering enhancements for high 
frequency sonar (not a resonance). 
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/ 

R/V HENDERSON 

Hydrophone / 
position 1 

PVDF sheet 
source 

Hydrophone 
position 2 

Sphere: stainless steel 316 

outside radius 
thickness 

a = 29.85 cm 
h = 1.52 cm 

/7/a = 5.1% 
dry weight 130 kg 
density r = 7.98 g/cm3 

longitudinal sound speed  q_ = 5770 m/s 
shear sound speed cs = 3110 m/s 
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4 6 

Frequency (kHz) 

"flexural" resonances 
Frequency 

n calculated (kHz)      measured (kHz) 

2 
3 
4 
5 
6 
7 
8 
9 

1.46 1.50 
1.76 1.79 
2.05 2.03 
2.31 2.31 
2.60 2.60 
2.96 2.96 
3.40 3.39 
3.93 3.93 
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BACKSCATTERING BY ISOTROPIC SPHERES 

plane wavefronts 

Total far-field pressure 

p = eikz + (ae'kr/2r)f 
f = form function 

r»^«1 

Backscattering 

fpWS = (2/i(ka)) 2 (-1)n (2n + 1) Bn(ka)/Dn(ka) 
Bn and Dn are 5 x 5 determinants 

(empty shells) 

[or 3 x 3 determinants (solid spheres)] 
containing spherical Bessel, Neumann, and Hankel functions. 
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RST analysis of monostatic and bistatic acoustic echoes from an 
elastic sphere 

G. C. Gaunaurd and H. Überall8' 
Naval Surface Weapons Center, R43 White Oak, Silver Spring, Maryland 20910 

J. Acoust. Soc. Am. 73 (1), January 1983 

(C) 

FIG. 2. Form-function versus kta for the tungsten carbide sphere. (A) Mea- 
surements (from Ref. 13), (B) classical theory, (C) comparison. 
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Resonance Scattering Theory:    Flax et aL JASA 63, 723(1978). 

Flax, Gaunaurd, and Überall, Physical Acoustics, Vol. 15(1981). 

Product Expansion of the S function: 

Marston, Kargl, and Sun, in Acoustic Resonance Scattering, 
edited by H. Überall (Gordon and Breach, 1992) pp. 305-333. 

f(x) = |fn(x), f^i'Vn^n'    ^^iyV30 
n=0
 complex S 

(+) = Sphere, (-) = Infinite Cylinder 

,<+>     _^n„        ... r     , » 
[gn(x)]    = 2(-l)  (2n + l)/x ,     [gn(x)]    = 2(-l) [i£n/(i7cx) 

1/2 

..s-1 
fn(x) = (2i) [Sn(x) -1] gn ,     Sn = S function with ISJ = 1 

Sn = Sn  Sn    ' S«    = » »   /   *   -     w T  ,       n * 0 
c     _ TT V  P/      /v  n/       / 

i   < (x:,+x)(vx)' 
Xn/" Xn/' irn//2      ^^Z cance'f°r weak damping 

f = f(b) + f(e)    f,=(i/2) s^} gn r rx - x - (i/2)r i'1 

background        ^ RST weak damping contribution to f^ 
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,M*-»I Jfo(y)l    RIGID RESONANCES ^ .(<(,(»• >|   RIGID BACKGROUNDS 

?IG.3.Srpirnion of the fimtiruip*iü»jw«vo(len)hitorrvminrrt (center) «nd rigid b«ekgroumU (right). RooiuneaiBbbekd by «n index/with 
»ode a. Arrow* xhow rnoninm featnra (or dips) in the modo. 

J. Acoust. Soc Am, VoL 73. No. 1. January 1883 G. C Gaunaurd and H. Überall: Echoes from elastic sphere 
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Backscattering amplitudes from a tungsten carbide sphere 
2 

o 
T3 
3 

a 
E 
< 
8 
> 

circumnavigation 
index:    m = o 

.20 

.10 

A    fc «   4P 

ka 
20 30 40 50 

^-r Theory from 
\ Sommerfeid-Watson 
) Transformation 

"^^TTT- m = 1 

Radiation 
60 ro 

SWT    pR>m   _ lu
R'e 

%f damping pR 

gives:     lp, \t 

specular form function Ifsl = {PEPL " PvfiViP^L + Pw°) 

GR is a coupling coefficient which accounts for: 

(1) interaction for the acoustic field with the Rayleigh 
wave and (2) axial caustic for sphere.  
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"furtgstefl  carbide mto«t*r        ^ 
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ka 
Fabr3-Perot   f6w   ^flr+Ke. JttU    fcttrfu* 

_ Q e ~ 2(ir - *,)# ify u3 a VAC 

j     x=ka fi = 
[ 1 +   exp( - lirßt + ilmc/Ci)] 

1. U/or-ks   fcot-Ji     on."   a.ne$    o$£n  resonance.. 

5. The da^p^   fa    neet    not   be   SmailL 

s. Resonances need   «of   be isolated. 

GTD for backscattering from elastic spheres and cylinders 
in water and the coupling of surface elastic waves with the 
acousticfield   Philip L Marston       37)5 A (TamAar^, 1188) 

'$"<-x«)/*'S1M<'0/f RST 
Breif -U/'Q»er 
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Williams and Marston JASA(1986) 
Solid Sphere 
Ray Synthesis 
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?LOS 

— 2 

Kargl and Marston 1989, JASA(1991) 
Thick Shell 
Ray Synthesis 

u   £%att 

8 12 

ka 
16 20 

e^c./c frem toots of 3>v(k*)^o 
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G/from comparison with RST 

Ray theory near a resonance reduces to: 

V» - (VWjk Xrf-x-O^ 

-1 

where x = Xn/ denotes the resonance conditions 

Require that complex frequency plane residue match 
the RST residue in 

(+) (-) 
sphere: n    =(xc/c/) -(1/2);     cylinder: n   =xc/c/ 

:<Vi .(b). 
gives     Gl «-2roi^ gnSn e "'/     and since     lSn"l = 1 

(+) 
G,  (x) ~ 87lß  c/c , o> « 8ftß/(7CX) 

1/2 

Marston JASA (1987,1988). For rigid background: 

As ka —> oo,   arg 
.(-) 

-> 1C/4,       arg 
.(+)"' 

->0 

General background: Marston, Wave Motion (1995) 
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3' 
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From: 

Marston and Sun , "Resonance and interference 
scattering near the coincidence frequency of a thin 
spherical shell: An approximate ray synthesis," JASA 
92,3315-3319(1992) 

£1 
c 

(a) 

^ 

til, 
0- 

a, 
'       ■ 

20 40 60 60 100 

ka 
i  coincidence freq. 
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Experiment at APL Barge 
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' ■      4    cycles of low n modes ^ 
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High frequency back scattering enhancement for general shapes 

Experiments 

1. G. Kaduchak et al., "Elastic wave contributions in high- 
resolution acoustic images of fluid-filled, finite cylindrical shells 
in water," JASA 100, 64-71 (1996). 

2. S. F. Morse et al., "High frequency backscattering 
enhancements by thick finite cylindrical shells in water at 
oblique incidence: experiments, interpretation and 
calculations," (submitted JASA). 

3. K. Gipson, Experiments in progress. 

Theory 

1. P. L. Marston, "Leaky waves on weakly curved scatterers. II. 
Convolution formulation for two-dimensional high-frequency 
scattering," JASA 97, 34-41 (1995). 

2. Marston, "Approximate meridional leaky ray amplitudes for 
tilted cylinders: end-backscattering enhancements and 
comparisons with exact theory for infinite solid cylinders" 
(accepted in JASA). 
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Applied Research Laboratory 
The University of Texas at Austin 

G. Kaduchak and C. M. Loeffler, "Elastic wave contributions in 
high resolution acoustic images of fluid-filled, finite cylindrical shells 
in water," to appear in JASA dune 1990. too t <oH CKf 6J 

f 

receiver 

\&r source 

^00 krlr 

High resolution image of finite cylindrical shell: b/a=0.9449 

40 60 80 
distance - centimeters 

100 
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Spatial surface convolution approximation of leaky wave 
contributions to three-dimensional scattering 

• gives spatial dependence of surface wave amplitude directly 
(for image interpretation) 

• not limited to thin-shell mechanics 

• avoids singularities of "pure ray theory" 

• meridional ray example is for an especially large contribution 
and gives expected fiat surface limit as radius a diverges. 

^LMarrfovt, GeovwiehntfaX fiv*<* CcA&siyophe. ophcs 
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T//H6     "    ^ time   (in milliseconds)    K".Tr.r<. S^P-^'!   ('."fl 

BoLck.scath?WnjcW toRatr/etgk   umves on  stainless  st£c( «jdnder 

(8&akHt hne. bursts] 
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Meridional leaky ray amplitudes. wtviftwferj 
Example: Ravleigh wave on solid stainless steeTcylinder. 

If/ 
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farm 

fix7/ IMW^r 
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Entfy infinite SS20V cylindrical sktU in UJvkr 
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Exact and ray synthesized total scattering cross 
section of a thick spherical shell in water. Kargl and 
Marston JASA(1990). 

II 

CM 
Co 
K    2 

II 
II 

Exact 
A—*- 

"W/\A 
4\ f^Ls 

ray synthesized     V^>^/ 

t w ir sir 
ka 

Note: (1) There are no acoustically active high Q low 
frequency modes; (2) The torsional modes of the shell 
are not acoustically active (e.g. T2 is at 60 kHz or ka of 
4.9 and T3 is at 94 kHz or ka of 7.6). 

"25 
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Magnetic excitation and acoustic detection of spherical 
shell modes in air and in water 

Brian T. Hefner 
Philip L Marston 

Department of Physics 
Washington State University 

Pullman, WA 99164-2814 

Work supported by the Office of Naval Research 
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Ultrasonic spectroscopy of metallic spheres using electromagnetic- 
acoustic transduction 

WardL Johnson, Stephen J. Norton, Feibc Bendec* andRobert Ptess 
Metallurgy Division. National Institute ofStmuiards and Technology. Gothenburg, Moryiand20899 

« (b) 

FIG. 1. (a) Sample/transducer configuration. The spherical metallic sam- 
ple is supported between the poles of two permanent magnets and surround- 
ed by a coil with its axis parallel to the magnetic field. The pedestal support- 
ing the sample and insulating tube supporting the coil are not shown, (b) 
Schematic of transduction physics. 

(•) (b) 

FIG. 2. Same as Fig. 1, except the coil axis is perpendicular to the magnetic 

field 
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I- 5V4 
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Aluminum Shellw'.H» Bias Field 
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Total field B("r ,t) = Bj+ B2(t,t) where Bt = Btz 
is a uniform static field. What is the distribution of 
Maxwell stresses on the shell in a B field with an 
oscillating component? 

Note: At typical excitation frequency of 64 kHz 
the skin depth 8 for aluminum is less than the 
shell thickness h = 0.5 mm. 

1. The oscillating B field obey approximately the 
diffusion equation and only weakly penetrates 
the interior of the sphere 

V^cf a=conductivity 

2. As a first approximation the shell may be 
treated as a perfect electrical conductor (PEC) 
so that D2(~?,t) is completely excluded from 
the shell. \ 

S tfdfc 
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3. The B2(f ,t) field pattern is roughly that of a 

static B-field for a perfectly diamagnetic sphere 

(Minside= 0)- ?°r a uniform applied field B0 sincot 

with B = B z, at the sphere's surface. 

B (r = a, t) = -$B0(sincöt) (3/2) sine 

A^ A 
Total B = zB - 6 B„ sine 

I o 

B = B (3/2) sincot 
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Local Maxwell Stress on the surface 

BB- ilBI  I 

Normal (or radial) stress component 

F..-f.(T    -f.)- 
\   out      in/ Mr 

t 

^VNtPi^-aia*. 
2 . 2 

where Be = (B1 + B3) sin 6 

2 1        2 
Br = B*cosze 
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F
Mr=-4BoBi(sine)2(slnö)t) (TeoHl) 

" äu~ Bo(slne)2(sln(ot)2 (Te^z} 

Term 1 describes Lorentz force of static field on 
the eddy current. It oscillates at GO. 

Term 2 describes the radial Maxwell stress of the 
oscillating term alone. It has an oscillating 

component at 2to since (sinoot) = £ (1 - cos2üot). 

Both Terms 1 and 2 couple to the n = 2 shell mode: 

since P2(cos8) = (3cos26 -1)/2, 

sin26 = 1 - cos26 = - (2/3) [P2 (cose) -1] 

4*4 »444A44 

Tef^i. 



TRANSPARENCY 57 

Steel Shell w/ Bias Field 
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I 
9 

.-A*-*- 

so 
c»a 

- FItfeJ 
30000      (40000 

A TU * A<  L 
Fr»Tuency(H2)       ?   g( 

Wave velocities for stainless steel shell 

Tabulated 440c (m/s) 

5854 

3150 

Fitted (m/s) 

5960 

3321 

Calculated (kHz) Measured (kHz) 

Mode fitted c^Cg tabulated 440c cL, cs 

A2 36.60 34.83 36.60 

A3 47.52 45.36 47.74 

T2 60.00 56.91 
A4 59.81 57.19 59.60 

A5 76.01 72.81 75.64 

Eo 80.30 77.99 80.76 

T3 94.87 89.97 

A6 96.04 92.06 96.72 
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Fluid Loading Experiment 
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20000 

Fluid Loaded Shell (response at 2f) 

Frequency   (Hz) 

—"T«A**WTeJ 

J - R-frccl 
100000 

Wave velocities for stainless steel shell 

Tabulated 440c (m/s) Fitted (m/s) 

cL 
5854 5960 

Cs 
3150 3321 

Calculated Fluid Loading Frequencies Measured 
(kHz) (kHz) 

Mode fitted cu cs         tabulated 440c CL> CS 

A2 32.54 31.89 31.60 
A3 41.93 40.05 
A4 53.19 50.07 
T2 60.00 56.91 60.00 
A5 68.84 65.70 
Eo 28.16 28.16 
A6 90.74 85.1 
T3 94.87 89.97 94.2 
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20000 

Non-magnetic Huid Loaded Shell j (z£- ffcsoon** j 

40000 60000 

Frequency (Hz) 

80000 100000 

Non-magnetic shell: 

• No response at f. 

• No resonances excited other than A2. Most notable 
is the absence of the sharp resonances present with 
the magnetized shell. 
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Fluid Loaded Shell w/ m perpendicular to the axis of the coil 
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Possible torsional excitation mechanisms: 

1   Eddy currents and "self field". 

Recall Johnson eL al. 

w w 

Su 

c   . 

Z 
< 
O 

•o 
£J 

"3. 
E 
<   t 

Su 
Tu 

jli 
(L5 1.5 ZS 3.5 

Frequency (MHz) 
4.5 

FIG. 6. Vibratianal spectrum of the 3.145-mm 2024 aluminum sphere with 
the coO configured as in Fig. 2(i). 

"Self field" of the shell is 
aligned perpendicular to the field 
of the coil. 

Drives'!^ mode 
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2. Torque on distributed magnetic moment by 
oscillating fields. 

(a) does not rely on eddy currents 

(b) for uniform magnetization M may be modeled 
by force on surface magnetization charge 
density (source of static H) 

© 

• Uniform M drives T3 mode 

Asymmetries in either the magnetization or the 
position of the shell in the coil could drive the T2 
mode. 
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3.   M aligned with coil axis: Microscopic domain wall 
motion or domain rotation and the conservation of 
angular momentum. (Einstein-de Haas effect and/or 
torsional magnetostriction) 

O 
■Suspension 

4[ir       Suspended 
J    ffL-—ferromagnetic 

B 
y 

specimen 

Magnetizing coil 

Fig. 15.4. Einstein-de 
Haas gyromagnetic experi- 
ment. When the current 
in the magnetizing coil is 
reversed, the magnetization 
in the specimen is reversed 
and the specimen rotates. 

Kittel (2nd ed.) 

Unmagnetized Magnetized by 
domain growth 

(boundary 
displacement) 

«I 
L. 

t X \ 
Magnetized by 

domain rotation 

S> © 
Couple to T3 or (if offset) T2 

Coü 
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How can the torsional modes be radiating sound? 

Two possible mechanisms: 

1. The sphere is attached to 
fishing line by a small bit of 
epoxy. This could be moving 
with the shell surface and 
radiating sound. 

For example, the T^ mode will 
cause the epoxy and string to 
move parallel to the axis of the 
coil and hence radiate sound. 

2. The shell is composed of two 
separate halves which are 
bonded together. These halves 
may not be sufficiently identical 
for the torsional modes to be 
purely rotational. 
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Conclusions: 

• Demonstrated that the modes of a spherical 
metallic shell could be driven magnetically and the 
acoustic signal could be used to measure the 
response in both air and water. 

• A static bias field is not needed if the acoustic 
detection is carried out at twice the driving 
frequency. 

• For magnetized spherical shells in water the low 
lying torsional modes could be excited and 
detected and these modes have very large Q. 
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MATERIAL PROPERTY MEASUREMENTS 
VIA DIGITAL GHz INTERFEROMETRY 

Hartmut Spetzler 

Geological Sciences/CIRES 
University of Colorado 

361 



FIGURE  1 
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FIGURE  2 
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FIGURE  3 

GHz Signal 
Generator 

I 
Pulse 

Generator 

Coaxial "T 
Oscilloscope 

Sapphire Buffer Rod 

Transducer 
(ZnO, LiNb03) 

HDAC with 
Ultrasonic Attachment 

PC with 
IEEE 488 

Heater 
Power Supply 

Digital 
Thermometers 

364 



FIGURE  4 

Diamond Anvils 

Transducer 

Sample 

Gasket 

•o 

a. 
E 
< 

Input Pulses 

7\ 
p   (Sp 

Echoes from P 
Echoes from P 

time 

365 



FIGURE  5 
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FIGURE  6 
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FIGURE  7 
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FIGURE  9 
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FIGURE  10 
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FIGURE   11 
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FIGURE   13 
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FIGURE   14 

GHz Interferometry in a Diamond Anvil Cell 
(under development, CU and Bayreuth) 

a.) Complete Equation of State over P (10 GPa) and T(1200 K) 
simultaneously, 

fa.) Small samples (50 microns), thus solid solution series and high 
pressure phases possible. 

c.) Simultaneous measurements with X-rays yield new absolute 
pressure scale. 
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FIGURE   15 
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FIGURE   16 
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FIGURE  17 
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FIGURE   18 
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•    Experimental data 
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APPLICATIONS OF ULTRASONIC 
INTERFEROMETRY 

Dipen N. Sinha, Kendall Springer, Wei Han, and 
David Lizon 

Los Alamos National Laboratory 

Sponsors: Office of the Assistant to the Secretary of Defense, 
Counterproliferation Program 
Defense Special Weapons Agency 
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Determination of Sound Speed and Attenuation 
from Ultrasonic Interferometry 

Cl = 2dAf; sound speed 

2c,      cflJJ) 
o/ = : + 

nod 
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(TIT   ) V * min        max / 

a=^ + - 

n 

2     2 
= - + a,(/>/ 

impedance ratio 
/ = liquid 
w = wall 

d = path length; T = transmission amplitude; a = sound attenuation; f = frequency 
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Ultrasonic Interferometry in Multi-Layered Systems 

Transducer 
Interference Patterns of a Multi-layered System 
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Non-Invasive Liquid Density Determination 
Using Ultrasonic Interferometry 

Liquid Density Determination 
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^aPtfc/P/J 
 Unknown 

Contribution due to 

liquid absorption 

 Known 

Contribution due to acoustic 

imepdancc mismatch + other 

Frequency' 

Non-invasive Liquid Density Determination 
1.4,—, 

0.6     0.7     0J     0.9     1.0     1.1     1.2     1J     1.4 

Reported p(g/cm]) 
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Container Geometry and Material Independence 
of SFAI Measurements 

Ethylene Glycol 

Same attenuation 
N 

-a 

0* 

Peak Frequency (f2, MHz2)) 
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Comparison with Theory 
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Sensitivity of Ultrasonic Interferometry Technique 
Single Peak Tracking 

0.B 1.0 

Frequency (MHz) 

Detection of Contamination in Liquids 

f0= 1.79 MHz 

Liquid volume ~ 10 cm1 

Drop volume  ~ 0.05 cm1 

Frequency shift resolution = I Hz 

Sensitivity - I part in 5 million (by volume) 

2 3 4 

Number of drops 
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Ultrasonic Interferometry in Cylindrical Containers 

1000 
Determination of Liquid Viscosity Effects 

Tangential 
waves 

Dual-element 
transducer 

Compressional 
Wave 

Ethyient Glycol 
Glycerine 
Empty 

Effect of 
viscous damping 

2.45 2.50 2.55 

Frequency (MHz) 
2.60 2.65 

Liquid viscosity can be determined from the interaction between tangential 
waves and the liquid inside. The asymmetry in the container wall thickness 
mode resonance peak is due to the contribution of tangential modes. 
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AREAS OF APPLICATION OF ULTRASONIC 
INTERFEROMETRY 

• Chemical Weapons Verification 
• Basic Research 
• Industrial Process Monitoring 
• Biomedical 
• Food and Beverage 
• Environmental Sensors 
• Materials Diagnostics 
• Customs and Drug Interdiction 
• Geological studies 
• Ultrasonic Tomography 
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Non-Invasive Identification of CW Agents 

Artillery shell 

Portable SFAI 
Instrument 

SFAI measurements of CW agent 
physical properties 
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Use of Ultrasonic 
Interferometry in 
Non-Invasive 
Identification of 
Chemical Warfare 
Compounds in 
Sealed Munitions 

Portable Instrument 

Chemical Munitions 
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500 

400 

300 > 
E 

■a 

J      200 
a 
E 
< 

100 

Cylindrical Piezoelectric Resonator 
Expanded view 

Q-1000 

.LMSJJLLXJJ 
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cylinder 
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Ultrasonic Interferometry in Air 

Aluminum Plate      Transducer 

250 260 270 280 290 

Frequency (kHz) 

Usage: Gas flow, humidity, detection of suspeneded particulates 
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> 

a 
'r—t 

'a 
B 
< 

Noninvasive Detection of Aerosol in 
Sealed Metal Container 

Carrier Gas + Suspension 

Carrier Gas Only 

0.80    0.81     0.82    0.83    0.84    0.85    0.86    0.87    0.88    0.89 

Frequency (MHz) 
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Ultrasonic Interferometric Characterization of a Single 
Drop of Liquid 

Miniature transducers 
7.0 7.5 8.0 

Frequency (MHz) 

9.0 
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Broad-Spectrum Toxicity Sensor for Monitoring 
Water Pollutants 

Effect on liposomes is monitored using ultrasonic interferometry 

40-110 nm 
<      ► 

Suspension 

5 nm 
■4 *• 

=« 

Liposome Lipid bilayer 
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Ultrasonic Interferometric Characterization 
of Bones and Joints 

Ultrasonic Spectra of Finger Joints 

Sound speed (measure of bone porosity) 

Finger with arthitris 

100     200     300    400    500     600 

Frequency (kHz) 
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Effect of PCP on Liposome Suspension 
Sound Attenuation 

1400 

1200 - 

Single Peak 

1000 

|    800 

« •a 
S 
=5    600 
E 
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400 

200 

Lipid Concentration: 

3 mg/ml 

- FWHM: 3.36 kHz 

4.86 

-PCPcone. 3nM 

PCP cone. 8 nM 

■ PCP cone. 20 \iM 

4.87 

Frequency (MHz) Frequency (MHz) 
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Particle Size and Volume Fraction Determination 
in Liquid Suspensions 

Ti02- Water Suspension: f = 2.22 MHz 
1525 

1500 

1475 

1450 

In 1425 

-=■ 1400 

Jj 1375 
W 1350 

§ 1325 

W 1300 

1275 - 

1250 h 

1225 

feed: Concentrated Suspension Theory ■   Measurement 
 Model Prediction 

R =4.0 urn 

R =2.0 urn 

Model      :         m ■ 

A. 
R =0.25 um 

v   R =0.50 urn 

"'«v.        "'"■■ 

R =1.0 um 

0.00 0.05 0.10  0.15  0.20 0.25 0.30 0.35  0.40  0.45 0.50 

Both sound speed and 
attenuation in a suspension 
depend on the particle size. 
Sound speed measurements 
are shown as a function of 
volume fraction. 
The particle size can be 
determined by curve-fitting 
the measured data with theory. 

Volume Fraction, a) 
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Measurement of Concentration of Chemicals 
using Ultrasonic Interferometry 

Excess Attenuation Coefficient vs. Sugar Concentration 

0      5     10     15    20    25    30    35    40 

Sugar (wt%) 

4 ( * 
Frequency (MHz) 

Sound speed and sound attenuation as a function of frequency can be 
noninvasively monitored. 
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Detection of Material Deposition Using 
Ultrasonic Interferometry 

> 
a 

500 

400 

300 

J      200 
ex 
E 
< 

100 u 

Aluminum plate: 3.1 mm thick 
Hold-up material 

Dual-Element 

Transducer 

No backing material 

Thin layer of grease 

- Thin layer of salt+oil 

4.1 4.2 

Frequency (MHz) 
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Noninvasive Characterization of Eggs using 
Ultrasonic Interferometry 

500 550 600 

Frequency (kHz) 
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Not Included in Transcript 

Non-Invasive Monitoring of Petroleum Products 

Gasoline Ultrasonic Properties 

^e/S9   90     - 

Chemical composition, 
of petroleum products and 
other chemicals can be non- 
invasively monitored 
using ultrasonic interfero- 
metry 

1090, -* 
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RUS use in chemical weapons convention and resonant 
photoacoustic spectroscopy of aerosols 

by 
W. Patrick Arnott 

Desert Research Institute, DRI 
Reno NV 89506 

pat@sage.dri.edu 

RUS use in chemical weapons... 
1. Manufacture the Los Alamos system for use in the verification portion 
of the Chemical Weapons Convention (CWC). 

a. Technology transfer supported by the Defense Special Weapons 
Agency and DRI cost share. 
b. Can operate within DRI, can transfer to Desert Research 
Corporation. 

2. DRI team includes... 
a. Rick Purcell, M.S. Mechanical Engineering. 
b. Morien Roberts, Ph.D. Computer Engineering. 
c. Dan Wermers, M.S. Electrical Engineering. 
d. W. Patrick Arnott, Ph.D. Physics, 
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The PTS - Preparatory Commission - OPCW 
Home Page 

The Chemical Weapons Disarmament Website 

Info I Documents I A Guided Tour of the CWC I Contact   Address 
THIS PAGE LOOKS NICER IF YOU LET IT'S ORIGINAL COLOUR SCHEME SHOW! 

Media! NGOs! Documentation on 
All  information on the First Conference of the a common transmission file 

States Parties (May 1997) Structure is now available. 

.....          .     . .       Do not forget to check the The forms for industrial 
A list of interesting ,obs                 Bilfboard!      ~ declarations are now 

at Uft w                 Most ietxat update 4 April 1997 available 

At this website the Provisional Technical Secretariat of the Preparatory Commission for the Organisation for 
the Prohibition of Chemical Weapons (what a name! just call us the Secretariat) provides information on the 
Chemical Weapons Convention but also on other issues relating to toxic chemicals and chemical protection. 

m The Chemical Weapons Convention 

(the complete text of the Chemical Weapons Convention) 

§& The PrepCom and its members 

(includes lists of points of contact in most Member States) 

What's happening at the PrepCom 

(beprepared through the PrepCom Calendarium) 

rhe National Authority Adviser 

(almost everything a new or well established National Authority needs to know) 

Fact-finding files 

(plenty on chemical weapons and other toxic chemicals, protection, relevant publications, etc.) 

m Links to other Internet sources 

(the hottest links on the Web for anyone interested in CW matters) 
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Table 1 

n 
i 
i 

Toxicity of Chemical 
and Biological Agents 

Estimated Lethal Dose 
in mgfperson * 

n 

Chemical 
Agents 

Biological 
Agents 

r  1000 mg 
100 mg 
10 mg 

_    1 mg 
A mg 

.01 mg 
 .001 mg 

.0001 mg 
.00001 mg 

.000001 mg 
.0000001 mg 

.00000001 mg 

Toxin Agents 

* One paperclip weighs approximately 500 mg. 

Source: Office of Technology Assessment« Technologies Underlying 
Weapons of Mass Destruction (Wzshingtori D.C.: U.S. Government 
Printing Office/December 1993), p. 77. 
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ARS Papers 

(Paper: 124K). (Presentation: 1.5M) R. Roberts, P. Lewis, and O. Vela. A pattern 
recognition algorithm for the blind discrimination of liquid and solid filled 
munitions. (LAUR-95-3789) To appear in Proc. 29th Asilomar Conf. on Signals, Systems, and 
Computers, IEEE, Pacific Grove, CA, Nov. 1995. (Abstract) 

;lO(Paper: 30K) O. Vela, P. Lewis, R. Roberts, J. Chen, and D. Sinha. Acoustic classification 
of chemical weapon munitions. (LAUR-95-1073) In Proc. ONSITE 3rd Int. Conf. On-Site 
Analysis, Houston, TX, Jan. 1995. (Abstract) 

(Paper: 154K). 3 (Presentation: 242K) R. Roberts, P. Lewis, J. Chen, and O. Vela. 
Techniques for classifying acoustic resonant spectra. (LAUR-94-3977) In Proc. 28th 
Asilomar Conf. on Signals, Systems, and Computers, pp 1195-1199, IEEE, Pacific Grove, CA, 
Nov. 1994. (Abstract) 

• i-BT-.J(Paper: 169K) R. Roberts, J. Chen, O. Vela, and P. Lewis. Munitions classification using 
an acoustic resonance spectroscopic technique. (LAUR-93-4108) In Proc. 27th Asilomar 
Conf. on Signals, Systems, and Computers, pp 991-995, IEEE, Pacific Grove, CA, Nov. 1993. 
(Abstract) 

.^(Presentation: 59IK) P. Lewis. Acoustic Resonance Spectroscopy (ARS) for 
Chemical Weapon Munition Identification. (LAUR-93-2115) Briefing presented in Moscow, 
Russia, November 1993. 

• li-f.:!(Paper: 53IK) D. Sinha. Acoustic resonance spectroscopy. IEEE Potentials, 11(2): 10-13, 
April 1992. 

This Page: http:/Avww.esa.lanl.pov/ars/papers/ars-papers.html- Last Update: 8 Nov 95 
Paul Lewis - Los Alamos National Laboratory - Group ESA-MT 
Email: rnherts@lanl.gov - 
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ARS HOLOGRAPHY 
Video holograms showing some of the vibrational resonance modes of a 105mm munition. Each "contour" corresponds to 1/2 micron. 

771« Page: http.VAvww. esa. lanl. goy/ars/ars-home. html - Last Update: 18 Oct 95 
Randy Roberts - Los Alamos National Laboratory - Group ESA-MT 
Email: roberts@lanl.gov 
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SIMPLE BLOCK DIAGRAM 

1. Digital Signal Analyzer (DSA). 
2. Acoustic Resonance Spectroscopy Software (ARS). 
3. Piezoelectric source and receiver attached to shell by magnets. 

SPECTRUM 
ANALYZER 

SENSOR 
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ARS IS PORTABLE 
(PC BASED PEN COMPUTER, WINDOW 3.1) 

SENSOR ATTACHMENT TO MUNITION 
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1. Set up the computer 
for your particular site 
and expected munitions. 

2. Make templates using 
munitions with known 
chemical fills. ARS uses 
these templates (one for 
each fill agent) to 
estimate the chemical fill 
in other munitions of the 
same size. 

3. Use ARS to estimate 
the type of fill contents 
in other munitions. 

Acoustic Resonance Spectroscopy 

|       S_ite Setup       J 

|      Collect Data      | 

C.reate Template ; 

View & Analyze 

Exit 

1   !li il m 
AAAAAA 
m |2| I2| |2! |2| !2! 

II 11  II! IJJ 
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|3 3 !3l i3 :3i '31 
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TEMPLATE 
Magnitude (mV) 
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Table 3. Emission factors for different sources of elemental 
(black) carbon (from Ogren and Charlson, 1984) 

Elemental <f> 

Source Fadfal 

Vehicles, diese! engine 
Fireplace, softwood 
Jet engine 
Fireplace; hardwood 
Vehicles, gasoline engine 
Solid fossil fuel 
Natural gas 

2 
1.3 
1 
0.39 
0.02 
0.001   i-.^.k,D/V£««-T> 
0.0003 

Reproduced by permission of Munskgaard International 

a>f >* 

A*. 

pu 
Ikhchr 

n B 
A^tiUcAA^r        [*(of\Js.tf*>f     *   ^5 
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PRELIMINARY EVALUATION OF THE DRIPHOTOACOUSTIC 
SPECTROMETER 

Comparison with aethalometer data from the Brighton site during NFRAQS 
Dec 96 thru Jan 97 

by 
W. Patrick Arnott, Hans Moosmüller, C. Fred Rogers 

Desert Research Institute 

Assistance in the field by 
John Walker, Pueblo CO 

Mitch Walker, ARS, Fort Collins CO 

532 nm laser provided by 
Professor Jin, Professor Bruch 

Physics Department, University of Nevada Reno 

Photoacoustic spectrometer development supported by 
Environmental Protection Agency Office of Exploratory Research 

Field operation supported by 
Desert Research Institute, IPA grant 

OUTLINE 
1. The North Front Range Air Quality Study. 
2. The photoacoustic spectrometer. 
3. Comparison of photoacoustic spectrometer and aethalometer results.. 

414 



TRANSPARENCY 13 

The North Front Range Air Quality Study. 
The Northern Front Range Air Quality Study (NFRAQS) is a major effort 
• to determine the sources of existing air pollution in the Denver urban 

region, attributing to each source or source category an estimate of its 
emissions. 

• to collect data necessary to support informed decisions leading to 
attainment of state visibility goals and federal air quality standards. 

DRI is the main contractor for NFRAQ 

OUR FIELD SITE LOCATION: 
BRIGHTON COLORADO 

(DEC 96, JAN-FEB 97) 

BOULDER, CO X BMGHTON, CO 

/ 

a ^ X ^ 
DENVER, CO *& 

/ 
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LASER 
BEAM        Sample 
DUMP Ine* 

Sea. 
Pressure 
Antinode 

Window 

10 cm 
Acoustic 
Notch Filter 
O 
Resonance 
Frequency 

Samp)« 
Output 
Eat—.    . . 
O        J—IMODULATED LASER | 

Schematic view of the photoacoustic spectrometer. 
Light Absorption in Dimensions of Inverse Distance = Babs 

B abs 
fin ^-res TC^f 0 

Y-l    Q 
f0 = Resonance Frequency. 
Q = Resonator Quality Factor. 
Pm = Peak Acoustic Pressure at f0. 
y = Ratio of Isobaric and Isochoric Specific Heats For Air. 
PL = Peak Laser Beam Power at f0. 
Q = resonator quality factor. 
Ares = Resonator Cross Sectional Area. 

TYPICAL VALUES: 
PL = 50 mW to 105 mW (depending on the laser used), 
Ares = 5.07 cm2, 
f0 = 500 Hz, 
Q = 80, 
Bandwidth of spectrometer « f0/Q = 6.25 Hz, 
Pm = 6 |iPa (Pm = -10.5 dB Rel. 20 uPa),  

Babs = 7.5 Mm •l 

Broadband noise background equivalent to Babs = 0.5 Mm"1 

ENBW of Phase Sensitive Detection « 7.5 mHz. 
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Block Diagram of the Photoacoustic Spectrometer and Detection 
Electronics 

Computer 

Waveform 
Generator • 

Preamplifier, 
Band Pass Filter 

Laser 

->~4 

Lock In 
Amplifier 

FFT 
Analyzer 

Microphone 

Photoacoustic 
Spectrometer 

Temperature 
Monitor 

Acoustic 
Stop Band 

Filters 

Piezo Disk 

Integrating 
Sphere 

Photodiode 

Air Pump 
Air Inlet 

Lasers used were both very compact and efficient: 
• 532 nm frequency doubled NdYAG laser diode pumped laser, 

« 60 mW modulated power. 
• 685 nm laser diode, ~ 102 mW modulated power. 
532 nm laser was only available for 2 days. 

The 685 nm laser diode was confined to pass cleanly through the 
spectrometer only with the use of an initial collimating objective 
very near the diode followed by a cylindrical lens to reduce 
astigmatism in the beam, and finally followed by a converging 
lens to reduce the beam width. 
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Photoacoustic Spectrometer with 532 nm Laser 
25 

20 - 

— Photoacoustic 

  Aethalometer 

i. L: L. 

00:00:00    06:00:00    12:00:00    18:00:00    00:00:00 
NFRAQS, Brighton CO Site, 18 Dec 96 

a) 

30 
Photoacoustic Spectrometer with 685 nm Laser 

Photoacoustic 

Aethalometer 

00:00:00    06:00:00    12:00:00    18:00:00    00:00:00 
.* NFRAQS, Brighton CO Site, 7 Jan 97 

Typical comparison of aethalometer and photoacoustic spectrometer determinations of 
light absorption by aerosols during NFRAQS. In a), the 532 nm laser was used for the 
photoacoustic spectrometer, though the 685 nm laser was used in b).  
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Crude Theoretical Investigation. 

Light absorbing aerosols are not likely simple spherical particles. 

Rayleigh Scattering Limit of Mie Theory for Spheres: 

Specific Absorption Coefficient ka (m
2/g): 

:a: k -6n 6nrn- 

Pp^ (nr2 - nj2+2)2 +(2nr n^2 

where: 
pp is the particle density, A, is the wavelength, and nr and nr are the wavelength 
dependent real and imaginary parts of the particle refractive index. 

•   Small particle limit, ka is independent of particle diameter, and is dependent on 
wavelength, both explicitely and through the complex refractive index. 

A 
MIE ABSORPTION 

ö) /\ 

"E7 

•s6 

-                 /   \ 
— 532 nm 

O '              —^^                                           \ 
05 
c 
•2 4 
a "            \        p = 2g/cc 
k. 
0 3 r                        \      n     =2 
n \          real 

<2 -                          \   "      =1 0 \       imag 

0 1 a> a 
C/3   0    L 1 1 I   II I I ll I I '    I           '      T*T-<■——1 

0.01             0.1                1                10 
Sphere Diameter (urn) 

Specific absorption coefficient for spherical light absorbing particles. 
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VARIOUS EFFORTS WITH 'CYLINDRICAL' 
RESONATORS 

DRI 
Plane wave mode, ft = 500 Hz, Q = 80. 
(Laser power, integration time limited) 
532 nm and 685 nm Semiconductor, Solid State Lasers 50 mW to 100 mW 
Detection Limit Bats = 0.4 Mm'1 

OTHERS 
ADAMS: 
Best result with azimuthal mode, ft = 3970 Hz, Q = 220. 
(Window absorption limited) 
514.5 nm Argon Ion laser 1 W (horrible efficiency). 
Detection LimitBab$ = 4.7Mm'1 

EUROPEAN EFFORT (Tetzold and Niessner, 1996) 
Azimuthal mode, ft = 6670 Hz, Q = 300. 
(Somewhat window absorption limited, flow noise problematic, higher Q 
resonator made for lower integration time) 
802 nm laser diode, 450 mW 
Detection Limit Babs = 1.5 Mm'1 

References. 
Adams, K. M., L. I. Davis, Jr., S. M. Japar, and W. R. Pierson (1989). 

"Real-Time, In Situ Measurement of Atmospheric Optical Absorption 
in the Visible via Photoacoustic Spectroscopy - II. Validation for 
Atmospheric Elemental Carbon Aerosol." Atmos. Environ. 23,693- 
700. 

Petzold, A. and R. Niessner (1996). "Photoacoustic Soot Sensor for in-Situ 
Black Carbon Monitoring." Appl. Phys. B 63, 191-197. 

Roessler, D. M. (1984). "Photoacoustic Insights on Diesel Exhaust Particles." 
Appl. Opt. 23, 1148-1155. 
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Resonant Photoacoustic Spectroscopy of Optical Materials 

J. D. Maynard, Chang Yu, and Wei-1i Lin 
The Pennsylvania State University 

Technology Issue 

Develop and characterize optical materials which are highly transparent 

Applications 

• Optical fibers in long distance communications systems 

• Lenses and windows in high power laser systems 

• Electro-optic, magneto-optic, and acousto-optic components 

Objective 

Develop a fast and sensitive method for measuring very small optical absorp- 
tion coefficients 
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Measurement of Small Optical Absorption 

a (cm"1) 

Power loss: Transmission        10 "^ 

Temperature rise:    Calorimetric 10 "^ 

Re-radiation: Emittance 10 

Strain, static: Interferometric     10 "5 

Strain, acoustic:      Photoacoustic       10 ~° 

Resonant Photoacoustic 10 
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Pulse photoacoustic 

Laser energy per pulse 10_1 J 

Limited by:    Noise in transducer 

Light scattered to attached 
transducer 

Rep rate < 103 Hz 

Resonant  photoacoustic 

CW laser, modulated @ 105Hz       10"4 J 

Modulate at acoustic resonance of sample 

Gain = Quality factor (Q) = 104 - 106 

Non-contact transducers: no scattered 
light, higher Q 
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Theory Laser Beam as an Acoustic Line Source 

Energy absorbed 

Temperature increase 

Thermal expansion 

E = Wral 

Wral 
AT 

Geometry 

CppV 

AV = VßpAT 

AV = 7T (R + Aß)2 I - TTR
2

1 = 2TTRARI 

Wraßp 
AR = Peak-to-peak displacement 

Particle velocity amplitude A = uAR/2 = 

1-nRpCp 

Wßpa 
1-nRpCp 
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Pressure radiated by pulsating cylinder        P(r) = 

Green's function for line source 

Equivalent source strength, small kR 

Displacement source strength 

ipcA 

H0 (kR) 

G (r) = iirHo (AT) 

Ho (kr) 

SP = 
pcA 

nH'0 (kR) 
~ —kRpcA 

S = 
SP_ 

pCLJ 

- kRA 
~ 2w 

kR Wßpa 
2u 2itRpCp 

kWßpa 
4irupCp 
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Green's function for a finite rectangle 

G(x,y,xo,yo) = —2^2^ 
m     n 

16 ^ ^ cos (Bas) cos (gp) cos (sy) cos (ay) 

(m/a)2 + (n/6)2 - (k/ir)2 (1 + t/Q) 

Add source strength S, evaluate with cos = 1, ka = rriTr, n — 0 

Displacement amplitude v> = 

Optical absorption coefficient a = 

' kWßpa \  16     Q 
4-TTüjpCp) irab(k/ir)2 

> 
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(c) (d) 
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sample 

gimbol 
mounts 

interdigital capacitive 
transducer 

sapphire spheres 

massive supports 

motorized positioners 
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vacuum box 
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Resonant acoustic determination of elastic moduli 
Steven L Garrett 
Physics Department. Code 61 Gx. Naval Postgraduate School. Monterey. California 93943 

(Received 11 December 1989; accepted for publication 23 February 1990) 

A long rod of circular or elliptical cross section can be selectively excited in the torsional, 
longitudinal, and flexural resonant modes using a single pair of electrodynamic transducers 
consisting of coils glued to each end of the bar and placed in the field of a magnet. The elastic 
moduli of the material can be simply determined to high accuracy by measuring the resonance 
frequencies of these modes and the mass and physical dimensions of the rod. Since the 
longitudinal and flexural modes both yield values for the Young's modulus, the system has a 
built-in redundancy that makes the interpretation of the data more robust. The large signal 
amplitudes make automated measurement of the temperature dependence of the moduli simple 
through the use of a phase-locked loop to track the change in the resonance frequency with 
temperature. 

PACS numbers: 43.40.Cw, 43.20.Ye. 62.20.Dc, 07.10 + i 

INTRODUCTION 
The accurate measurement of the elastic constants of 

materials and their dependence on temperature, static pres- 
sure, and other ambient parameters is important in many 
fields of science and engineering research, as well as in prod- 
uct design and quality control. This is particularly true for 
hydrophones, since most transduction schemes involve the 
measurement of the deformation of some solid material in 
response to a change in pressure. The elastic modulus relates 
these strains to the applied stresses, so its value and its tem- 
perature dependence are important design parameters. In- 
terest in the measurement of these moduli in the acoustical 
transduction community, particularly for castable poly- 
mers, has increased recently due to the development of inter- 
ferometric fiber-optic hydrophones,1"2 which measure the 
strain in the optical fiber induced by pressure changes in the 
fluid. Castable polymers are attractive for several hydro- 
phone designs that use shell structures*"7 or encapsula- 
tion*-1' for strain enhancement, since the optical fibers can 
be cast directly into those materials as well as for more con- 
ventional piezoelectric hydrophones.1-'3 

Manufacturer's specifications for elastic constants of 
castable polymers are not particularly useful for the hydro- 
phone designer since they are usually determined by static 
techniques, rarely contain more than one modulus (two are 
the minimum required to uniquely specify the elastic re- 
sponse of an isotropic material '*), vary widely depending 
upon sample preparation (eg., catalyst) and cure tempera- 
ture, and never contain information about the temperature 
dependence of the moduli. It is also important in hydro- 
phone design to measure the elastic moduli at the frequen- 
cies of intended operation, since it is well known that the 
static and dynamic moduli of plastics can differ substantial- 
ly'3 due to the existence of relaxation time effects that can 
make the modulus measured by conventional quasi-static 
stress-strain curves significantly lower than the dynamic 
modulus. Since it is the dynamic modulus that determines 
the acoustic sensitivity, and the static modulus that deter- 
mines the deformation due to increased operating depth, it is 
important that both are known to the hydrophone designer. 

A recent series of measurements on 31 elastomeric sam- 

210 J Acoust Soc Am. 88(1). July 1990 

pies by Lagakos «a/.1*-17 illustrate how the assumption of a 
simple form for the frequency dependence of the Young's 
modulus can lead to unacceptable disagreement between the 
measured moduli and the predicted value. For the case of 
Uralite 3130, a polyurethane used in a prototype fiber-optic 
planar flexible hydrophone design,' the variation between 
the model and measured"modulus was in excess of 750%. 
One must question the validity of their temperature coeffi- 
cient of the modulus measured at 1 MHz when extrapolated 
to operating frequencies of less than a kilohertz. 

Because of the number of variations in the preparation 
that are available to the experimentalist (cure, catalyst, fill- 
ing fraction for composites, etc.), it is important to have a 
convenient technique for measuring at least two moduli for 
reasonably small samples. Since the derivation of a third 
modulus from the measurement of two others can be very 
sensitive to the values of those moduli (particularly for sam- 
ples with Poisson's ratio close to 0.5). it is important that the 
measurement technique have very high precision. In the fol- 
lowing sections, a technique is described that is convenient, 
accurate, precise, and economical, that depends upon the 
measurement of the frequencies of the longitudinal, flexural, 
and torsional resonant modes of a single rod-shaped sample 
of circular cross section using the same two transducers to 
excite and detect all three modes. 

The fact that the technique is resonant insures high sig- 
nal-to-noise ratio while the fundamental measurement being 
a frequency means that one can obtain extremely high preci- 
sion with an inexpensive instrument (i.e., a frequency 
counter). The technique can be used with both insulating or 
conducting samples that are not ferromagnetic. An addi- 
tional attractive feature of this technique is the fact that 
Young's modulus can be determined independently in two 
ways by the measuring the frequencies of the longitudinal 
and flexural modes. This provides the experimentalist with 
immediate feedback on the self-consistency of his/her data 
and analysis. (A man with one watch thinks he knows the 
time; a man with two is never sure!) 

The technique for measurement of the torsional mode is 
a refinement of one developed first by Barone and Giaco- 
mini'" to study the modes of vibration of bars having vari- 

210 
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Measuioineiii ol the viscoelaslic propetlies of malerials using Hie resonant modes of a "free-free" bar, 

Brown and Garretff ASA, Houston, Nov., 1991 

FLEXURAL RESONANCES 

„2    /TÖ24L^Y  p 

LONGITUDINAL   RESONANCES 

£nIL=j_  rw 
n -2L V p 

ft* 1,1,1' 

TORSIONAL  RESONANCES 

fn,T=j_ 
II.   2L 

439 



TRANSPARENCY 5 
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Resonant frequencies of free-free bar 

If the damping in the bar is not considered, the solution can be expressed as the 
linear combination of the "mode", plane harmonic wave solutions whose frequencies 
are the integer multiple of a basic frequency for nondispersive modes (i.e. longitudinal 
and torsional modes) and nearly integer multiple of a basic frequency for dispersive 
mode (flexural). 

Under the condition of free-free ends, for nondispersive modes, 

fn
L = ncL/2L;        n = 1,2,3,-. 

fJ = ncT / 2L;        n = 1,2,3,- • •. 

where CL = ^E / ß ,     Cj = ^JT/ Q , 

For flexural modes, the frequencies are 

fn
F = 7in2cLK/8L2;n = 3.01,5.00,7,9,11 

where L is the length of the bar, 

cL and cL are the phase speed of longitudinal and torsional waves, 

K is the radius of the gyration, K2=| - J/J y dxdy 

LL is the Young's modulus — — — H  
A L 

G is the shear modulus 

p is the density of the bar. 
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Elastic Moduli in terms of Resonant Frequencies 

So It is a rather simple matter to determine the elastic moduli from 
the resonance frequencies of a free-free bar 

2      T 2 
G = 4pL (fn  / II)    , from torsional mode, 

1      T 2 
E = 4pL  (f n   / n)     from longitudinal mode, 

64       T4/rF /    2\2 
1} = —-—z-pJL (ln / n   )     from the flexural mode. 

71  K2 
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Complex Modulus and Q 

Equation of motion for a damped driven oscillator 

M^ + R^+Kx = F(t) 
d2t        3t 

If the applied force is sinusoidal of frequency co, 

-ö)
2
MX + K(I+J^)X = F* 

where the coefficient of the effective stiffness term can be 
expressed as 

K* = K f l+j^^) = K (ll+j tan gl) 

At resonance, m=a0= VKAI, the loss tangent is inversely related to 
the quality factor, Q by 

1    _   K   ^YKM^(QDM_Q 
tan8    (OoR        R R • 
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Transfer Function Method 

n it ii 

<^> F = I -L x B 

V=B   Lxu 

II II n i 

u = velocity 
F= force 

V = voltage 
I = current 

B = Magnetic field 
L = length 
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Torsional  Mode 
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Data Analysis Torsional Mode 

Mode # Frequency     Freq/Mode   #   Quality    factor 
[n]       [fn]    Hz [fn/n] [Q] 

1 
2 

3 
4 

5 

525     525 

1106     553 
1683      561 
2322     580 
2944     588 

6.12 

5:93 

5.59 
5.22 
5.12 

G = 4pL2 (^fßsßm 

ft = shape correction factor,       1 for a circular rod 
ftn = transducer mass corection 

a 

200 

G = 4(1025X0.2733}2(525J2(1.20)(1.23):= 124 M PA 

100- 

o-t 

525 Hz; 23 C 

y = 123.62 + 8.9385e-3x     RA2 = 0.867 

B    G (MPa) 

•    loss tang % 

»trr« M 

y m 15.497 + 1.4333e-3x     RA2 = 0.974 

   • — 

—I— 
1000 

—I— 
2000 

tan£ 
3000 

Ftoqiiency (Hz) 
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Phase Locked Loop Method 

s 
L. 
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N 
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Volute 
Controlled 
Oscillator 
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i 

I 

Digital Multimeter 
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—x 
XL CT I 

■it IU ■ 

iiat»» •.»*•■> vi :,.»•• ••.. ...ITt,    ,/ • 

LCD. _GQj 
 ►• k 

Lock-in Ampllfiei 

Mixer 
Integrator 

Frequency 
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HP 53 MA £=£> 
i 

Dirital 
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Ilhalco 1201 
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"I 

BandPaJi 
Filter 

Block diagram of the instrumentation used to track the dynamic orcodi 
dependence on temperature and frequency. 
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X 

Jq? *s 

Shear modulus of PR1592 as a function of frequency and temperature. 
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Transfer function 

:fM+jV^ -MM2 w2 
V2M/ 

Thus the transfer admittance function has poles at Yand 7* and a single zero at 00 = 0. 
Im 

y=a + jb -Hsrl   *" y* = a-jb 
Pole zero plot of complex admittance function. 

If we express the location of the poles as a*B, then Q can be expressed as follows 

Q_ Vb'+a' 
-2a     ei?) 

and the resonance frequency is equal to 

CD 0 =Vb77?=b(i4 = b 
(18) 
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p R 15*2 

1E+9 

REDUCED FREQUENCY (Hz) 
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Complications associated with soft materials 
Complications high loss materials 

Correction factors due to added mass and stiffness of 
Transducers becomes very important. 

Materials can be so soft that they can't support a constant 
shape 

Losses can be so high that there is no apparent resonance 
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Corrections Factors 

The simple (thin bar) theory is often 
not sufficiently accurate 

Corrections: 

due to coupled motion in a bar 
(Saint Venant warping function). 

due to thick or short bar 

due to added transducer mass 

due to added stiffness of the transducers 

456 



TRANSPARENCY 22 

Coupled motion in a bar correction factor 
(Saint Venant warping function). 

When the bar is excited to a particular mode, any element in 
the bar moves mainly due to the particular mode. But still it has 
to move along the perpendicular direction because the volume is 
constant. 

Longitudinal Mode: an element that is not at axis of the bar 
moves both along the axis and in the radial direction. 

Torsional Mode: an element move both in the cross section 
plane and in the longitudinal direction. 

The coupled motion and hence correction factor can be 
substantial as the elastic modulus or correctional area is 
increased. 

[Ref Love, A treatise on the mathematical theory of elasticity]. 
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Coupled motion case correction factors 

When the coupled motion among different dimensions is 
considered, the resonant angular frequencies (0) can be 
recalculated by the energy methods. The angular frequency 
change is A<B . And the angular frequency of the "bare" bar is a>0. 
M is the mass of unloaded bar. Am is the added mass(include 
coils and glue), L is the length of the bar. A/ is the length of the 
transducer along the axis of the bar. The added mass is regarded 
as a point mass at the position away from the end by —. For 

torsional mode, 

(rT\ 
G = 4pL2 n 

vn; 
/ ßcQ 

/ 
where Q^ = 1+ AmK' (xmM\ 

-a 
cos 

V 2L ) MKP" 
which is slightly smaller than the above correction. 
(Danielson) 
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Torsional Examples for different cross-sections 

For a cylindrical symmetric bar, 

the warping function 0=0, 

For an ellipsoidal cross-section bar 

with semi-major a (along x axis) and semi-minor b, 

*       a2-fe2 

a  + b 

For a rectangular cross section bar of sides ia (along x axis)and 
2b, (Ref. Spinner and Teft) 

'   u(2n+1)7tX 

2/2Y3 ~    (-l)n   Smh      9h        •  (2n+l)7cy 
J 1 -1   ^ k3       (2n+l)rca 2b 

2b 

pr * (-Dn 

W n=0(2n+l): 

459 



TRANSPARENCY 25 

Correction for shear modulus 

For torsional mode, the corrected formula of shear modulus 
becomes: 

f*T\ 
G = 4pU n 

KnJ 
L2c A2T   «^ m 

.   „   o     (a2 + b2)2 
For the ellipsoidal cross section bar, 1Z§ — TT-~— 

4a b 
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Correction for Young's modulus 

Young's modulus can obtained either from flexural mode or from 
longitudinal mode. The corrected Young's modulus from flexural 
mode is 

E ■ ^ 

/-F\2 

n 

vn/ 
ßi 

where £1^ is the correction factor. 

For rectangular cross section bar of sides ia (along x direction) 
and 2b(=h), we have *=-p= and the correction factor is, 

Jt. 
= 1+ 6.585(1+ 0.0752V +0.819v2)f-J  -0868-1  - 

8340(1 + 02023V + 2713v '(3 
1 + 6338(1 + 0.14081V + L536v") 

As an example if -=o.i, 7=1.07, which represents 7% correction. 
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Wave equation (w/ Saint Venant warping) 

For the torsional mode, the wave equation becomes, 

RS dz2   at2   ^ az2at2 

One can see that there are 4th order derivative terms in the wave 
equation when coupling is considered. 

*F is the angular displacement of a "disc" element at location z. 
2 

ßs and JLL   are from the coupling effect. 

2    f[02dxdy 
QS=IP/J |i  -^—z  ■ 

h 
J is the polar moment of inertia of the bar's cross section, 

Ip is the polar moment of inertia of the bar's cross section when 

the Saint Venant warping function 0(x, y) is zero. 

j = ff x2 + yz + x-—y— dxdy, 
\ By       ox) 

Ip=JJ(x2 + y2)dxdy, 

The solution to the wave equation takes on the wave number 

CO _ CO 
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Correction for transducer mass 

No coupling case (just added mass) 

If the mass of transducers at the ends is considered, but the 
coupling motion among different dimensions is neglected, the 
formulas are the same except that the length of the bar is 
replaced by an effective length. For longitudinal and flexural 
mode, the effective length is 

LeffsL^ff2L(l+m/M). 

For torsional mode, the effective length is 

L^ff =L(l + 2m/M) 

(After Garrett's JASA article circa 1990) 

The correction can be obtained by means of Rayleigh's energy 
method. The effects of the transducer is only the effective 
increase of the length of the bar due to the increase of the mass 
of the bar. The resonant frequencies is less than that of the 
original bar. Because the mass increase is may or may not be a 
significant correction depending on experimental relative masses 
of the transducer and bar. 
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Why temperature scales? 

Why thermodynamic temperature scales 

What good is Boltzmann's constant kB? 

What good is universal gas constant R? 

What is acoustic gas thermometry? 
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l/Vtj     l**p*r*iu**~   $c*l*sl 

AT 
T 

^\^ /o -"7 

f 
LlQUiJ 
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9' r4Uiut, 
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fatf   cJr    fztrcW^oLkvic*'    Rp*cJ-t*« 

o*~(e-T#) 
7^ 
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Examples of Primary Thermometers 

Dilute Gas 
(equation of state) 

PV = nRT(l  + — + 

Dilute Gas 
(speed of sound) 

Mc2  = —-RT{\   + A,P + . 
_n v 1 

Black Body Radiation    P =     4 =     TT2   lu   v4 
(power/area) ^     ai       60ftV* * ' 

Johnson Noise 
(power) 

<F2> 
P  =    = 4/^jA/ 

Dipole in Field 
(energy) 

E  = -jiB  = -juB ctnh 
( fiB N 

juB 
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Acoustic Gas Thermometry 

dilute monatomic gas 

±mV2 

2 
—kuT    =    — m 
2   B 2 

r9   2) 
— c 

V5     ) 

w 

c\T) 

273.16 K C\TW) 

kB = 

*  = "JM 

3 mc2 

5    T 
3Mc2 

5    T 

Resonance Method 

length 

time 

1/3 =    V1'* x/x eigenvalue 

w 

V1,3xf 

v w    Jw) 

'1 + 
A*w 2/3  W2 
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RADIAL   RESONANCES  IN A   SPHERE 

H/GHE'ST     POSSIBLE    Q    Ar   LöLU 

p£MC,iTY      (W>     VISCOUS      OAMP/Hb 

A/OT      SEN$IT(\/E      TO      SM4L.L    FRtOfrS 
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T 
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Clean Gas 
and Vacuum Valve 

Operator 

Figure 5. Cross-section of resonator and pressure vessel. The 
transducer assemblies are indicated by "T," and the locations of 
the capsule thermometers are indicated by "PRT." 
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Simplest Theory 

Rigid spherical shell, ignore temperature 

jn    =    nth spherical Bessel function 

äjjßa) 
da 

=    0 ; 
271/ 

f(n,D 

ti 
(Rayleigh) 

/  = # of root; / = 0, 1, 2, . . . 
n = # of Bessel fuction; n = 0, 1, 2, 
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Heat Flow Between Gas and Shell 

P 

{   f  ) 
- (-1+/) 'Y-I' 

heat flow V 2fl  )\ 
EL 
nf 

= (-l+/)(210xl(T6) 
N 

/o,i latm 

7" * 

Note:      2>r = 
/?C. 
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Figure 20. Excess half-widths of (0,n) resonances with argon in 
the resonator scaled by lOVfrequency. Ag = measured g minus 
calculated g. 
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THE   SHELL   BREATHES 
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From table 9 one 
can conclude, for example, that 1 ppm of water in 
helium will decrease c0

2 by 3.93 ppm and that 1 ppm 
of water in argon will increase cl by 0.12 ppm. 

Table 9. Sensitivity of cl to impurities 

Impurity M To 
1 
d 

d{cl) 
dx 

(g/mol) in He in Ar 

H2 2 1.4 0.23 0.68 
He 4 5/3 0.9 
H20 18 1.32 -3.93 0.12 
Ne 20 5/3 -4.0 0.5 
N2 28 1.4 -6.27 0.03 
o2 32 1.4 -7.3 -0.07 
Ar 40 5/3 -9.0 
co2 44 1.4 -10.3 -0.37 
Kr 84 5/3 -20.0 -1.1 
Xe 131 5/3 -31.8 -2.3 
Hg 201 5/3 -49.0 -4.0 
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exa* 
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Table 1. One-sigma uncertainties (in parts per million) from var- 
ious sources in the redetermination of R 

I (Volume)273 

density of mercury at 20 °C 0.28 
storage and handling of mercury 0.20 
thermal expansion of mercury (0-20 °C) 0.67 
random error of volume measurements 0.20 
corrections from weighing configuration 

to acoustics configuration 0.10 
mass of counterweights 0.14 

II Temperature 
random error of calibrations 0.8 
temperature gradient 0.4 

III M/y0 

Ar-40 standard 0.7 
comparison of working gas to Ar-40 0.4 

IV Zero-pressure limit of (/o„/v0„)2 

s.d. of ci from 70 observations at 14 pressures 0.68 
thermal boundary layer correction (0.3% of 

thermal conductivity) 0.30 
possible error in location of transducers 0.55 

Square root of the sum of the squares 1.7 
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Sj + mmfvy      *-£ P (cos G) 
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Measurement of the ratio of the speed of sound to the speed of light 

James B. Mehl 
Physics Department, University of Delaware, Newark, Delaware 19716 

Michael R. Moldover 
Thermophysics Division, National Bureau of Standards, Gaithersburg, Maryland 20899 

(Received 2 June 1986) 

Measurements of the resonance frequencies of the acoustic modes and of the microwave modes of 
a single cavity can determine u /c, the ratio of the speed of sound of a gas to the speed of light. 
Such measurements with a monatomic gas would determine the thermodynamic temperature T with 
unprecedented accuracy. By judicious choices of cavity geometry and resonance modes, u /c can be 
measured to part-per-million accuracy using cavities whose geometry is known only to parts per 
thousand. These techniques can also be applied to measurements of the universal gas constant R. 
A measurement of R would also require an accurate determination of the average atomic mass of 
the monatomic gas. 
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1U 

• NIST Acoustic, 1994 
o NBS Gas 
n NML Gas 
v UCL Acoustic, 1994 

 1 l 

+ PRMI Gas 
A NPL Total Radiation 
x NBS Acoustic, 1988 

200 240 280 320 
77 K 

Table xx: The difference T-T. 90' 

r-«/K 90' 

302.92 
293.13 
253.15 
234.32 
217.10 

T-r90/mK 
(isotherm fits) 

Argon 

3.93 ± 0.52 

2.79 * 0.44 

-2.83 ± 0.5g 
-3.67 ± 0.5Q 

-3.95 * 0.45 

(surface fit) 

4.46 * 0.36 

3.06 * 0.28 

-2.57 * 0.22 

-3.17 ± 0.22 

-3.7g * 0.23 

302.9166 

Xenon* 

3.52 * 0.95 3.53 * 0.86 

aErrors for xenon include all of the items listed in Table 1 together with an allowance c 
0.43 mK to account for the effects of the virtual leak and an allowance of 0.6 mK to 
account for uncertainty in the values of Az(T). 
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Sonic Gas Analyzers 

Steven L. Garrett and Matt Golden 
Penn State University 

and 
Robert Keolian 

Naval Postgraduate School 

OUTLINE 

Non-specific gas analysis 
Direct applications 
Secondary applications (GC) 

Historical Perspective 
The Schlagwetter-pfeife 
The rise of the Wheatstone Bridge 

Resonator design 
Isolate a single mode, suppress overtones 

ARL - Penn State 
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Sensor Applications 

Mine Safety 

Mine sealed with 148 still inside 
SY WIKOS KONSTANDARAS 

Assoaated Press 

KOZLU, Turkey - Despite ap- 
peals from weeping family 
members wnitine at the surface, 
officials sealed off the Kozlu coal 
mine yesterday, ending ail hope 
for 148 miners trapped one-third 
of a mile underground. 

In Turkeys worst mine disaster. 

mulation of poisonous gas made it 
perilous to enter the shaft. 

"No one down there is alive. 
Yesterday, they brought some in- 
jured, bat not today," said medic 
Sabahattin Oztas as he watched a 
(ruck dump tons of dirt on the 
steel-covered pit. 

Miners took turns shoveling the 
dirt in order to starve the mine of 
oxygen. 

Yesterday, headlines in Turkish 
newspapers said the disaster could 
have been averted. The stories 
said computers had showed in- 
creasing accumulation of methane 
gas at the pit, but that manage- 
ment failed to evacuate the mine. 

State Minister Omer Barutcu 
said an early-warning system did 
not work because methane gas in- 
creased to the dangerous level just 

Agricultural Chemical 

Methyl bromide warnings requested 
BY BETSY IQftOAH 

Heoa Sa* v\ww 

A I er at-a id group for 
farmworker* has sent i letter to 
Central Coast *trawherry grower! 
asking them to warn neiehbon 21 
days before the» use the powerful 
soil fumigant methyl bromide. 

Growers are not obligated le- 
gally to provide such warnings. 
uid Michael Meuter. a lawyer in 
the Salinas office of California 
Rural Lceal 

quenl the area is pan of being i 
good neighbor. Meuter said. 

"t think if growers want to no- 
tify then* neighbors and people 
that are nearby about their appli- 
cations, they are free to do that." 
said Richard Nutter. Monterey 
County agricultural commissioner. 
"But there is no legal requirement 
that would make them resonrnubtc 
for doing that." 

Because growers would want 
their neighbors voluntarily, the 
Agricultural   Commissioner's 

Without Harm, a group opposed 
to methyl bromide use. "People 
have the right to know that totic 

. chemicals are being used in their 
backyard.'* 

The CRLA sent the letters to 
375 Central Coast strawberry 
growers who have permits to use 
methyl bromide. Along with the 
letters, growers received a sug- 
gested wammg that they can use 

Included in the i 
■ A list of symptoms for those 

local and state agencies that han- 
dle pesticide emergencies. 

Growers also received a 
wat nina-func table tor methyl bro- 
mide developed by the California 
Department of Pesticide Regula- 
tion: the table is not used by regu- 
lators under current law. For es> 
ampte, if a grower treats 10 acres 
at a rate of 250 pounds per acre, 
the table reconimcods that anyone 
who frequents the zone withal a !■ 
müe radius should be warned. 

Meuter said thai under Califor- 

Pete Wilsons office. F 
advocates, environmer 
others who oppose r 
nude argue the exe 
growers a based o> 
rather than scientific n 

"That's probsbiv tn 
said. "But line dual ; 
the reality of things." 

As for the wantira 
Nutter said. "1 don't k 
information that would 
justify notification wtihi 

Because it poses h 
use of methyl bromide 

Other obvious applications 
Electric vehicles (H2) 
Chemical synthesis (e.g., H2 in NH3 or Cl2) 
Blast furnaces and metals processing (H2) 
Ethylene oxide in medical equip, sterilization 

ARL - Penn State 
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S. Garrett Sonic Gas Analysis 

Sound Speed in Gas Mixtures 

• Equipartition Theorem 
Each quadratic degree of freedom gets kBT/2 

Communism is not dead! 
Temperature is related to kinetic energy 

Pythagorean sum: <v2>= <vx
2> + <vy

2> + <vz
2> 

Symmetry: <vx
2> = <vy

2>= <vz
2> = (l/2)kBT/m 

• Adiabatic Sound Speed 

7 M 

• Sound Speed in Gas Mixtures 
Mean molecular mass 

Mmix = xM,+(l-x)M2 

Mean polytropic coefficient 
xCn, +{\-x)Cn-, 

rmix = —    ) _ [     *xr> +(l-x)r2 
V IV /     V 2 

Approximate sound speed ratio 

*L = i+[(r2-/,)/ri]^ 
a,2     \ + [(M2-Mx)l Mx]x 

Sensitivity analysis for resonance freq. shift, 8x 
öf    8a 
f\      ax 

(Yi-Yx)    (M2-MX) 

Mx 2     r 
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< uirreft. < loldcn <X- Kcolian Sonic Gas Analysis 

Sensitivity in Air 

«RS3S5S %®m? ■■:"&& 

Approximate sensitivity factor 
Assume y-factor is small 

ß= f 
^M2-Mx 

T,P 
2M 

Results for various gases in air 

o 
o 

CO 
c 

CO 

-2 

■ .'     >^ 1   

ARL - Penn State 

100 200 

Molecular Weight (a.m.u.) 
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S. Carrett Sonic Gas Analysis 

Schlagwetter-pfeife 

• German mine safety whistle (1884) 

Pump mine exhaust through a whistle 
Wavelength, X = 2L for an open-open pipe 
Frequency, fi = a/A, = a/2L 

• Methane frequency shift 
Molecular weights 

Ke,Hane ~ K,r - 16.043-28.964 _ _Q ^fi 
Matr 28.964 

Polytropic coefficients 
Ymahane ~ 7 air — 1-31 — 1.403 _ _ Q Qfifä 

ymr 1.403 

Relative frequency shift 
iL=&ws03g&019(& 

Example: 1% Methane (x = 0.01) 

Assume f^ = 440 Hz, L = A/2 = 39.2 cm, 5f = 0.84 Hz 
What is x for an explosive mixture? 

• Temperature compensation and "detection" 
Use two whistles in good thermal contact 
Listen for beat frequency f^ = f^ - f^ 
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S. Garrett Sonic Gas Analysis 

(Aimost)Thermal Conductivity Theory 

•  Thermal Conductivity 
Simple kinetic theory model 

K- K- 
Cla2 VA/ 

Also related to thermal molecular speed 
Square-root absolute temperature dependence 

Pressure independence at "normal" pressures 

Complex combination of constants 
CT  = Characteristic molecular diameter (Angstroms) 
Q = Collision function of keT/s (tough calculation) 

Ko = 1.9891 x 10-4 cal Ä2 gm1/2 sec"1 °K"3/2 

• Requires off-equilibrium measurement 

Extremely dependent upon experimental conditions 
"Probably the principal limitation upon the usefulness of 

the method is the fact that one can not calculate the significance of 
the indications obtained, but must, in every case, depend upon 
empirical calibration under conditions closely approximating those 
of actual service." 

Nat. Bur. Standards, Tech. Paper No. 249 (1924) 

Irreversible transport process 
No resonant enhancement, Q = 1/2 
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5. Gurren Sonic Gas Analysis 

Gas Thermal Conductivity Sensor 

"Hot wire" cell at right 
*22 Platinum H/ire^ ., 

Hard {Zubt>mn^^~-~\ / 

P/atrhum   S'*o*9 and Mr» 
<5oo/ect   ro G/oss 

Protecting   Cab 

Load Gk>33 

Odd  Saidormd- 

.OSmm  Platinum Wiro 

Outlet For Gas 

Tm •Sah'or&a 

■^■Silr&r   Salderva 

• Wheatstone Bridge detector below 

FlO. at.—Balanad WhcaMoiu bridot. 

Sfir/no Mod*  of 
30 Cobber Wire 

Bushina - 

1 */C Cofifiar warm Fusad 

■Siivw Soktmr*d 

Tin   So/darrd 

Via. io.—Unbalanad Wktatstoiu bridgt wilk potnUowuUr. 
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S. Gurren Sonic Gas Analvsis 

Resonant Sound Speed Measurement 

Complete system for Helium Recovery Air Alarm 
Garrett, etal, Physica 107B, 601 (1981) 

To Recovery Line 

^h^R|S0NANT -V9 
CAVITY 

COMPARATOR 

FREQUENCY 
TO VOLTAGE 

METER 

SUMMING 
AMP 

ALARM 

Q 

Offset COMPARATOR 

"Technology Push'* 
Precision/Cost ratio 

For frequency, 10 ppm « $20, based on quartz watch 
5-digit voltmeter * $1,000 

Availability of cheap transducers 
Electret microphone » $0.59 (1000's) 
Earphone sound source » $0.20 (100's) 

Availability of cheap circuit components 
Voltage controlled oscillators » $1.00 (1000's) 
Multiplier chips (e.g., ÄD633) * $5.00 (100's) 

Digital output (frequency) 
More compatible with analysis and display hardware 
No A/D conversion required 
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S. Garrett Sonic Gas Analysis 

Novel Resonator Geometries 

Basic Dual Half-Wavelength Dipole Design 

14 
16 
18 

10 Septum       12 
Microphone 
Speaker 

Mode supression 

Does not drive even modes 

Mike located at pressure node for S^mode 

Dipole drive localizes flow at edge 

Dipole gas motion is below cut-off for open tube 

Dipole mike is insensitive to incident plane waves 
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S. Garrett Sonic Gas Analysis 

Other Enhancements 

Short Screened End 
20 

• EZZ2ZZZZZZ2Z3 ° 
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25 Electronic thermometer (e.g., thermistor) 

26 Screen to prohibit physical frequency modification 

Quasi-Helmholtz 

>'<>;;>" ////////I 
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30      31      32     33      34     35      36 
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S. Garrett Sonic Gas Analysis 

Summary 

• Advantages of Sonic over TC gas analyzers 
Resonant signal enhancement 

Quality factor, 10 > Q > 1000 
Calculable response independent of "drive level" 

Gas flow rate is not a problem 
Recent availability of new components/transducers 

High precision-to-cost ratio 
Intrinsically digital (frequency) output 

Expanded processing and telemetry options 
Infinite lifetime 

No element burn-out or chemical regeneration 
Pressure independent 

Second virial coefficient gives 38 ppm/psi 
Also advantage of thermal conductivity analyzers 

> Disadvantages of Sonic (also shared by TC) 
Non-specific 

A problem if there are many possible "contaminants" 
Humidity can be a problem 

Requires active temperature compensation 
Much easier for sonic, but still required 

Humidity changes effect frequency 
±20% change in RH give ±800 ppm in frequency 
May require humidity compensation 
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Measurements of Relaxation Processes 
in Gases and Liquids 

Using Resonance Systems 
by 

Henry E. Bass 

Jamie L. Whitten National Center for Physical Acoustics 
The University of Mississippi 

University, MS 38677 

The 
•University of Mississippi 
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Absorption and Dispersion Due to 
Microscopic Processes 

(U^o)2 

ct(dB/m) 

f,     frequency "(Hz) 

fr related to relaxation or reaction time/rate 
Magnitude of dispersion/absorption related to concentration, 
heat of reaction 

The 
»University of Mississippi 
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Dispersion and Absorption 
Can be Small 

— for N2 - lxlO"4 

v 

a for air @ 1 kHz « 2xl0"3 dB/ meter 

for seawater® 10 kHz »10~3 dB / meter 

The 
tUniversity of Mississippi 
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Resonators 

Gases Evans/Parker 
Cylindrical Tube 

Rectangular Room 

Liquids        Fisher 
Cylindrical Tube 

Spherical Resonator 
The 

•University of Mississippi 
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Definition of Terms 

a Absorption/unit length 

8=ac/7i     With of Resonance Peak 
(Half power points) 

V    28 
Quality of resonance 

Time required for Energy Density 
*      A \nAT> 0161V 

to decay 60dB = 
Reverberation Time 

The 
•University of Mississippi 
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Boundary Effects 
Absorption of Sound in Tube 
Wall Loss Proportional to j_ fX 

R 

End Loss Few % of Wall Loss 

Other Sources of Bulk Absorption 
Viscosity and Thermal Conduction 
8b/ 5W~10-3 Typical for Tubes - Larger for Sghere 

The 
»University of Mississippi 
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14   T 

12   -- 

10 

\ 1 1 I 1 

6 8 10       12       14      16 

0 PureO, 

0,+l.92%Hj 

Pure 0, acconüng to 
HelmholB-Kirchhoff The 

»University of Mississippi 
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Interpretation of Results 

8 = 8(D + 8V 

5v=(RCi/Cp~Cv~)   [f0f
2/(f0

2+f2)] 

• Determine 8^ from pure Oz measurements 
• Determine f0 from 8V 

fo=1240HzforX=1.92% 
Collision number 2 X 103 

The 
»University of Mississippi 
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Relaxation in Sea Water 

2 j. «n :_" Mg2 + so; 

kn    l 

/H  /H 
M8°(H^HSO< 

' k3 

MgO(HSO, (MgS04), (I) 
J k4 

m3 m« 

The 
»University of Mississippi 
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CD   Iff 

3 
s 
«   10 o 

u o 

.g IOV 

10' 

Sound Absorption 

in Sea Water at 4° C 

p = latm, pH-S.0 

Water 
+ MgSO, 
+ B(OH)3 

Water 
+ MgS04 

Water 

A     ■   . /.....i    /    r i  i i um!     i  t i mill     i 

10 100 1,000      10,000     100,000 

Frequency (Hz) 

The 
»University of Mississippi 

521 



TRANSPARENCY 1 

Design Considerations for Thermoacoustic Resonators 

Thomas J. Hofler, Physics Department, Naval Postgraduate School 

Presentation Outline 

Resonator Topology & Efficient TA Refrigerators 

- 4 resonator topologies 
- Some theory 
- Optimal dimensions 

Suppressing Harmonic Distortion in TA Prime Movers 

- An example prime mover apparatus 
- Suppression criteria & numerical determination 

Amplitude Stability Issues in a Novel TA Prime Mover 

- Thermal resonator tuning 
- Modest amplitude oscillations 
- Sudden large amplitude changes 
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Design Considerations for Thermoacoustic Resonators 

Resonator Topology & Efficient TA Refrigerators 

4 Thermoacoustic Refrigerator Resonator Topologies 

fr— m   

transition B 
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Design Considerations for Thermoacoustic Resonators 

Resonator Topology & Efficient TA Refrigerators 

Cold Loss Calculation 

Assume constant acoustic 
environment for the stack. 

where X, = kx, = 0 at driver. 

Match lB(at transition A, 

X2A = tan" tanX \A 

Match p at transition A, 
P20 _ cosA^ 

PIO     cosJf2il 

transition B 

Time averaged loss per unit area is, 

w = JAM M2W + 
1   I rV * 

a A 

Integrating, the total cold loss in portion 2 is, 

A PT    = — 2"     D, \P\o- 

,2r V"1 
V 

1 

V? 2    X 2/1 

-ii   »"-1 sin2X 1A 

where the sphere compliance is assumed infinte. 

nD,8vap]0 ■pi _    js me power normalization. 
*ypm 
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Design Considerations for Thermoacoustic Resonators 

Resonator Topology & Efficient TA Refrigerators 

Sample Loss Calculations 

Two examples at the extremes of the resonator spectrum 

Example #1: X1 a = 0.4 radian; PrandrJ = 2/3 Example #2: Xla « 0.1 radian; Prandtf = 0.2 

c 2 

 Thermal 
 Viscous 

 Total 

■ \J 
■ 

*t^-^^^ 

— T — 

   

1   - 

0.2 0.4 0.6 

D2/D1 

0.8 1.0 

S 2 

m 
O 
.J 
•D 
Ö 
u 1 

1            i 
| 
/ 

1          ' 
; 

■• '...-'- 

"-»_ „i...—-•—'.**    ' 
 Thermal 
 Viscous 
 Total 

-r-r' i  1 -A  
0.0 0.4 0.6 

D2/D1 
0.8 10 
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Design Considerations for Thermoacoustic Resonators 

Resonator Topology & Efficient TA Refrigerators 

Optimal diameter change & resulting reduction in loss 

Diameter ratio for minimum 02 lost 

0.7 

0.6 •" 

0.4 

0.3 

0.2 

■ 

; 
yr                   ,-'' 

,.-''' 

y^     _y' 

 Pr»2/3 

 Pr»0.2 

s         **               ' 

 1 ;   
0.2 0.3 

X1a (radian) 

0.5 

Lots reduction at optimum 02/01 

5 o.s ^^ 

E 

p ^                                   _„-' 

^.~''~ 

y^        ,,- 
o 
u 3 

■o 

 Pr = 2/3 

—-Pr = 0.2 

\ 
-J 

'/ ,,-'' 

1 
0.1 0.2 0.3 

X1a (radian) 

0.4 0.5 
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Design Considerations for Thermoacoustic Resonators 

Suppressing Harmonic Distortion in TA Prime Movers 

™~"^~" Impedance & work flow at cold termination 

High-Amplitude Prime Mover Apparatus 
 |2, 

10- 

.*" """•-... 
*'», 

40- 
\ 

£ % 

20- l 

I, )\ 
\ 

0- ^  ̂         ^ ■*——_!*—*" 

300 400 

frequency (Hz) 

Modes with 3 cold end diameters 
1 
a   3.81 cm dum   _ 
o   4 45 cm diam 
A   5.08 cm diam   - 

o° 
& 

i  2 

o 

o 

-14- A 

2 3 

mode frequency ratio fn/f. 
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Design Considerations for Thermoacoustic Resonators 

Amplitude Stability in a Novel Prime Mover 
mrm«imi 

Half-wave TADTAR Design 

Advantages 
• High amplitudes possible with thermoacoustic driver 

• Proper orientation of heat & work flow 

- Stirling cycle transport improves performance 

• Good optimization freedom 

- Diameter & power of TAD & TAR are independent 

- Stack locations for TAD & TAR are independent 

• Performance is very sensitive to location of 
Pressure AntiNode (PAN) 

- Can be thermally tuned for easy starting 

Disadvantages 
• Performance is very sensitive to location of PAN 

- Will the acoustic amplitude be stable? 

• Unknown heat leak from hot heat exchanger 

Ambient- 

Hot 

Ambient 
Cold- 

VAN 

Driver 

PAN 

Cooler 
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(TTTC] 

«   Heater 
Tape 

Design Considerations for Thermoacoustic Resonators 
Amplitude Stability in a Novel Prime Mover 

Preliminary Measurements 

• Run driver only, with cooler sections empty 

• Measure acoustic amplitude & maintain 400° C 
hot temperature via human controller 

• Resonator tuning 

- Gross tuning with tube inserts 

- Fine tuning with heater tape on upper 
tube and heat gun on lower tube 

- 3 thermocouples were attached to each of 
the two small diam. tubes. Each triplet is 
averaged, converted to Kelvin, & the 
upper-to-lower ratio calculated. This 
"Temp. Ratio" indicates the level of fine 
tuning. 

„Gross tuning 
inserts 

-Heat Gun 
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Design Considerations for Thermoacoustic Resonators 

Amplitude Stability in a Novel Prime Mover 

Controlling onset in TADTAR via thermal tuning 
1.14 

■• 1.12 

■ 1.10   <o 

•108   !s 

-• 1.06 

a 
E • 
9) a 
3 

-• 1.04 

2250 2750 3250 3750 

Time (sec) 
4250 4750 

\-1 02 

1.00 

0.98 
5250 
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Design Considerations for Thermoacoustic Resonators 

Amplitude Stability in a Novel Prime Mover 

0.20   - 

0.15  - 

0.10 

0.05 - 

0.00 

Oscillatory TADTAR amplitude (rms) 
Period = 1 sec. approx. 

800 
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Design Considerations for Thermoacoustic Resonators 

Amplitude Stability in a Novel Prime Mover 

Sudden increase in TADTAR amplitude 
sample interval = 0.4 ms 

E 

> 
i 
£ 
3 
(0 
0) 
03 £  -0.2 - 

-0.4  - 

5000 10000 15000 20000 

sample # 

25000 30000 
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ACOUSTIC MEASUREMENTS of THERMODYNAMIC 

and TRANSPORT PROPERTIES in GASES 

[VI1 C^T" United States Department of Commerce 
I Al H      PI   National Institute of Standards and Technology 

/ 
^T0F<^ 

Q 

C 

\ 

% 

3 
& 

Sr4TES 0* 

MICHAEL R. MOLDOVER 

NIST Fellow 
Physical and Chemical 
Properties Division 
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THERMODYNAMIC  PROPERTIES 

1. Ideal-gas heat-capacity: Cp°(7) 

2. Virial equation of state: 

pV =RT[1 +B(T)p + C(J)/?2 +D(T)p> + ...) 

Mote: Resonance techniques are not recommended 

for liquids because oscillations of container cannot 

cannot be separated from oscillations of fluid 
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0.2 0.4 
p/MPa 

^^^^ 
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0 

3 
< 

X 
CO o 

■100 - 

-150 - 

120 kPa 
297 K 

A 87kPa 
373 K 

30kPa 
320 K 

TIME / hr. 

100 
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Acoustic Waveguides 

k\\\WW\7- 

J 
I 
P% 

,^S\\\\)S1 

6.5 cm 
LPRT 

i 

Bath 

Epoxy 
Waveguide 

^-Screen 

Diaphragm 
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O 
CO 
CO 

CO 

< 

0.001 

0.01 

200 
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temperature maximum number of 

compound range 
K 

pressure 
kPa 

isotherms 

Candidate refrigerants for vapor compression cycles 
CF3-CHF2 R134a 233 - 340 600 10 

CFC12-CH3 R141b 260 - 315 70 5 

CHC12-CF3 R123 260 - 335 80 6 

CHFC1-CF2-C1 R123a 265 - 300 50 2 

CHF2-0-CHF2 E134 255 - 327 170 6 

CHF2-0-CHF2 E134 255 - 374 90 8 

CF2-0-CH2-CF3 E245 278 - 384 50 5 

CF3-HF-CHF2 R236ea 267 - 380 600 8 

CHFC1-CF3 R124 250 - 400 900 17 

CHF2-CF3 R125 240 - 400 1,000 9 

CHF2-CH3 R152a 240 - 400 1,000 9 

CF3-CH3 R143a 240 - 400 1,000 9 

CF3-CH2
-CF3 R236fa 276 - 400 1,000 7 

CHF2-CF2-CH2F R245ca 311 - 400 900 5 

CF3-0-CF2H E125 260 - 400 1,000 13 

1 composition R134a/R32/R125 260 - 400 1,000 12 

CF3-CF2-CF2-CH2F    R338mccq 300 - 400 400 6 

Thermoacoustic Refrigeration 
5 compositions He/Xe 210 - 400 1,500 42 

Semiconductor Processing 

SF, 230 - 460 1,500 16 
oi 6 

CF. 300 - 475 1,500 9 

C2F6 
210-475 1,500 14 

i.      0 

Cl2 
planned 

HBr planned 

BC13 

WFS 

planned 
planned 
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U 
Y°RT 
M 

( 

\ RT       RT        RT        RT 
+ 

First, consider limit as p - 0 

c;(D /(j) M« 

/(J)  - 1       Mu1 - RT 

For polyatomic gases y° — 1. 

(e.g. SF6 ,   A298 K) = 1.094;  CJR = 1/10.6) 

Uncertainty of M from impurities amplified 10.6 x 

Ansatz:       B(T)  = bJl +(r*-l)(e 3_ iw. V_ 1)] 

£   = 2B+2(y0-l)T^ + 
dB  .  (?i"l)*   2i/

2J? 

Vwf I 

I 
G 
•4- 

</r Yo </r: 
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1.0 - 

3 

<J     o 'ftk^^^^ 
WN!KO~^~-^>^^—   ^*\N: 

o .i/iv    "^^    \\ 
-1.0 

i    i   i    i   i* 

0.2       0.4      0.6      0.8      1.0 
p, MPa 

Speed of sound data for CHF2-CF3. 

Pentafluoroethane = refrigerant R125 

Temperature range 0.71 z TITC 5 1.18 

Deviations of data from u(P, 7) surface. 

RMS deviations are 2 x 10"5 x u. 

Impurities cause larger systematic errors. 

The surface uses 3 parameters for CP°[T), 

(ideal-gas heat-capacity), 3 parameters 

for each of the virial coefficients B(T) and 

C(7) and 2 parameters for 0(7). 
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er    12- 

cr 

Ideal gas heat capacity of R125, 

deduced from the speed of sound data 

through the relation: 

Cp°(7)//? = Mu0
zl(Mu0

2- RT). 

R is the universal gas constant; M is the 

molecular weight and u0
z is the zero- 

pressure limit of rfiP, 71 

0.4 

O" °-2 

o 
oa    o 
<3 

eg 

£  -0.2 

0 
# o 

o     o 

■ 

-0.4 

260 320 
7-.K 

380 

Deviations of C°(T\IR from a polynomial. 

o present data 

■ independent spectroscopic 

information (estimated) 
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1.0 

N 
JL   0.9 
h- 

CL 

0.8 

- 

240  260\. 
360 

- 280 

V300 
■^340 

320 

- 

I      I      I   i_ i      i     i i     i i 

Compression factor of R125 deduced 

from u{P,T) data using the virial equation. 

The virial coefficients were assumed to 

have the temperature dependencies of a 

hard-core square-well intermolecular 

potential and the parameters in the 

potentials were fitted to the u[P, T) data. 

0.1 

CL 0 

-fl 9 I i I I  
0        0.2      0.4       0.6      0.8      1.0 

p, MPa 

Fractional deviations of the density of 

R125 deduced from u(P,T) data from 

independent density measurements by 

Boyes and Weber. 
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TRANSPORT PROPERTIES 

1.    Greenspan acoustic viscometer for/7; 

hard sphere of diameter o 

(mkBT)m 

rj =   
7T3/2a2 

2.   Prandtl number machine 

p    _   Cp i] __   viscous  diffusivity 

A thermal diffusivity 

= —    for hard sphere 
3 

3.   If time permits, electromagnetic equivalent of 

Greenspan viscometer: reentrant resonator 
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Afc// <4v* 

100 (mkT) 1/2 

f"     „3/2,2 

',«»•■" 
iv: «^ 

CO 
a   10 

h»' ; sf 
U'S 

J I    I  I I I 11 

10 100 1000 

< 
o 
o 

0 
x 

-a- 
D D 

O O 

o OO       o 
o 

nDDffl + 

-1 
++. +-*-.;_. .+ ++_ ■+tf 

i    i   i 

10 100 

TEMPERATURE/ K 

1000 
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Loss mechanisms spatially separated in standing waves. 
High thermal losses High thermal losses 

; I 

u 

High viscous losses 

Greenspan viscometer: A > length 

V 

u 
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D 

Double Helmholtz Resonator 

ou. ctA 
L.     L V,       VU 

U). = U)? ( I - 0-i) ao U' •   I 
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U, V 
(arbitrary 

units) 

-1.0- 

Atz, Av 

0.0005 

0.0000 

-0.0005 

160 

•  §  o  ° 
„   *   ~   o  ° 

170 

•  • 

•   8   •   a 
. *  « «      8 f g 

o 
o 

180 190 

/(Hz) 
200 

•   o 

210 220 
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Acoustic pressure contours near duct end 

tv 

Calculated from solutions of 

(V2 + /c>(r) = 0 

dp 
= 0   on boundary 
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to 

0.78  - 

0.76 - 

0.74 - 

0.72 

0.70  - 

0.68 
0 0.2 0.4 0.6 0.8 

«o 

CO* 

0.98 

0.96 

0.94 

0.92 

0 
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Orifice cross-sections 

Sharp comers Rounded comers 

o.oo 

-0.05 - 

<£'  -o.io 

-0.5 0.0 0.5 

fractional arc length sfr^ 

1.0 

ftCclJ . 1       1 
R(0) 3 

I r U1/3) 
'ch 

" 

K(0) = 0.9Ö„   ;      R(ra) = 0.65^ 
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10 -3 

lCT4 

io- 
(m2/s) 

10" 

5 _ 

Helium 

o viscometer 0 
• viscometer 1 
* viscometer 2 
A viscometer 5 
▲ viscometer 13 
o viscometer 23 

10 -7 

Ab, 
O.ooO ±0.oOf> ▲ Argon, viscometer 23 

• Argon, viscometer 13 
^Helium, viscometer 13 
o Propane, viscometer 13 
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Greenspan viscometer as an absolute instrument 
(no calibration) 

Argon in 4 viscometers 
Experimental 77 compared with reference values 

-0.01 
100 

p (kPa) 
1000 

Viscometer 23     0.002 ± 0.003 Viscometer 12     0.001 ± 0.006 

Viscometer 24  -0.005 ± 0.003 Viscometer 13  -0.002 ± 0.003 
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PRAWDTL NUMBER MACHINE 

Source 

V*l~\*j V 

Detector 
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Cylinder 
Axis 

.vimmiimimiimmmifiiiiiiiiijllllllllimilimiilllllll 

mmmiimmmmmmiiNliAillJjmiimmimmmmi. 

Parallel Plates, Honeycomb, 
or Drilled Plate, etc. 

1 .0 

<Q 
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£ 
o 
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Thermometer 
well 

Co-axial cable 

Gold o-ring 

Inductor 

Bolt 

Capacitor 

>b 
-►a 

h^c 

0 50 

mm 

*  - Ei-rr e 3 So MHz 

Q   cc  Jtekcrhr^c  COH$/^#»'/   *f  CU<J #n j*p 
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X = 2o civi 
37*" MHz 

A - 

CHI S21 i n   MAG 5 mil/     REF   -1 5  mU 
hP 

'< ̂  V 
Au g 
IG 

1 

1 

^ 
11^ J I 

, 
START     300 000 MHz STOP 3 000.000 000 MHz 
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Two-mode reentrant radio frequency resonator 
and equivalent circuit 

Li [J      () L2 

thermometer well 
gold O-ring        feedthrough 

ct 

L„ 

m 

HtS i 

a &-   : 

ri 
r2 

r3 «• 25 mm 

21-22 
± 
A   A 

Z3Z4 

U 
A   A 

± 
T 
ZjZg 

"A~^ 
-Z9 

X 
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Temperature dependence of the dielectric constant of water 

100 

270 320 370 420 

& 

to 
-0.1 

320 370 420 

T(K) 

• our data 
o Fernandez et al.. Int. J. Thermophysics 16, 929(1995) with LCR meter 
O Fernandez et al., Int. J. Thermophysics 16, 929(1995) with transformer bridge 
A Malmberg & Maryott, J. Research Nat. Bur. Stds. 56, 1(1956) 
V Oshry, Ph.D. Thesis, Univ. of Pittsburgh (1949) 

£fil = 296.3M5 - 1.219±0.005(T/K) +(2.03±0.01)xl()-3(T/K)2 - (1.3lJO.01)xl0*(T/K)3, s =0.007 (la) 
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